Gjorde unna R2 som privatist på et halvt år!! Mattevideo har gjort det mye lettere å fordøye et så tungt pensum på så kort tid. Tusen takk for hjelpa!!😊
Vilde Ågotnes
Bra undervisning!
Hamdi A Ahmed
Jeg er fornøyd med videone deres det har hjulpet meg til å bestå matten i både Vgs og Uni . Så takk😊
Min lærer går litt for raskt gjennom r1 pensum, noe som gjør at jeg trenger repetisjon av de vanskeligste emnene...les mer
Min lærer går litt for raskt gjennom r1 pensum, noe som gjør at jeg trenger repetisjon av de vanskeligste emnene.
Mattevideo har hjulpet meg med å Forstå, ved gode forklaringer og muligheten til å pause underveis i videoene. Jeg har også brukt mattevideo til å løse oppgaver. Før hadde jeg problemer med fremgangsmåten ved oppgaveløsning, men nå har jeg lært dette. Hos mattevideo gjennomgår jeg oppgaver fra hvert kapittel, deretter bruker jeg samme fremgangsmåte på oppgavene fra læreverket.
Hvis du er privatist, anbefaler jeg å bruke mattevideo kapittel for kapittel. Først ser du gjennomgangen av teorien, og deretter prøver du deg på oppgavene (løsningen ligger ute). Dersom du har en lærer i faget, er det kanskje ikke nødvendig å se absolutt alle videoene. Da kan du hoppe rett til de emnene du trenger å lære mer om, eller til oppgavene som han gjennomgår. Absolutt å anbefale. Jeg har lært masse, og fått hjelp før prøver.
Jeg kjøpte medlemskap fordi jeg ønsket forklaring via video og tilgang på "lærer" hele døgnet. Mattevideo er...les mer
Jeg kjøpte medlemskap fordi jeg ønsket forklaring via video og tilgang på "lærer" hele døgnet.
Mattevideo er genialt fordi man kan gå tilbake å se eksempler om og om igjen til man skjønner det. Man kan også bla tilbake til "enklere" relevant pensum hvis man trenger det. Jeg har brukt mattevideo i stedet for forelesninger på universitetet, rett og slett fordi jeg kan følge mitt eget tempo og gå igjennom pensum når jeg trenger det.
Jeg anbefaler å bruke mattevideo på følgende måte: Lag en oversikt over hva du trenger å lære for å bestå eksamen. Sett deretter opp oversikt en i en økende vanskelighetsgrad. Bruk eksempler i boka kombinert med eksempler i videoene. Når du har sett en video, så regn deg gjennom oppgavene du har tilgjengelig. Er du i tvil om du har skjønt det, så se videoen på nytt. Når man har kommet gjennom pensum, så kan man bruke videoene til repetisjon. Denne læreren er tilgjengelig hele døgnet, og blir aldri frustrert hvis du ikke skjønner noe de første gangene pensum gjennomgås:-)
Jeg ble abonnement hos mattevideo fordi jeg slet med å forstå pensum i 1T. Jeg ønsket å prøve, for å se...les mer
Jeg ble abonnement hos mattevideo fordi jeg slet med å forstå pensum i 1T. Jeg ønsket å prøve, for å se om dette kunne være en enklere måte å lære matematikk på.
Jeg har brukt mattevideo på flere måter. Jeg så gjennom temaer på mattevideo kvelden før læreren min gikk gjennom det på skolen. Da kunne jeg litt om temaet på forhånd, fikk mer ut av timen, og hang bedre med enn før. Ellers brukte jeg også mattevideo før og under prøver. Jeg så gjennom videoer 3-4 dager før prøven, noterte viktige forklaringer og oppgaver, og brukte notatene slik at jeg kunne gå tilbake på mattevideo og se videoer under selve prøven (når det var lov å ha med hjelpemidler så klart).
Jeg vil anbefale andre elever å bruke mattevideo på samme måte, da dette fungerte bra for meg. Mattevideo er en god side, med en flink og motivert lærer. Om du sliter med faget på skolen, kan mattevideo være til stor hjelp, du kan se videoer så mange ganger du vil, uten å henge etter! Anbefales til alle:)
Jeg ble medlem for å forbedre meg, og gå dypere inn i spesifikke temaer. Jeg går i 10. klasse og tar forsert løp...les mer
Jeg bruker mattevideo når jeg gjør lekser, for å repetere regnemetoder, eller gjennomgår vanskelige temaer jeg sliter litt med. R2 er et vanskelig fag, med det hjelper meg å repetere temaer og regnemetoder i mitt eget tempo, siden jeg kan se videoene flere ganger og sette læreren på pause når jeg vil.
Mattevideo er en tjeneste som er bra hvis du står litt fast i pensum. Du kan se videoene i alle mattefagene fra 1P til R2. Man kan gå igjennom pensum i sitt eget tempo, og se videoene så mange ganger man vil helt til man skjønner det. I tillegg er det ikke så dyrt, så det er verdt å prøve en måned.
Jeg ble medlem for å forbedre meg, og gå dypere inn i spesifikke temaer. Jeg går i 10. klasse og tar forsert løp...les mer
Jeg ble medlem for å forbedre meg, og gå dypere inn i spesifikke temaer. Jeg går i 10. klasse og tar forsert løp i mattematikk. To ganger i uka tar jeg turen til en videregående skole for ekstra undervisning, men jeg føler at timene der ikke holder, da mine krav til karakterer er på lik linje med de som faktisk går 1. vgs. Derfor måtte jeg ha et tilleggsverktøy, og dermed fant jeg mattevideo.
Jeg har brukt mattevideo hovedsaklig til to ting;
1. Introduksjon til nye temaer. Jeg har brukt mattevideo til å ta en titt på nye temaer før timen, slik at når læreren faktisk går gjennom temaene blir læringen mye enklere. Etter timen bruker jeg også mattevideo til å drille meg selv flere ganger på det vi gjennomgikk. På denne måten ligger jeg et skritt foran de andre.
2. Ta igjen tapt undervisning. Hvis du er borte fra timen på grunn av f. eks sykdom, kan du få den samme tavleundervisningen på mattevideo som de andre hadde i timen. Jeg spør bare klassekameratene mine om hva de gikk gjennom i timen, og finner det på mattevideo. Dette er definitivt det smarteste valget jeg har gjort når det gjelder matte, start med det nå istedenfor å sløve rundt når du heller kan forbedre deg i det morsomste faget på skolen!
Jeg brukte mattevideo da jeg måtte ta opp igjen eksamen, selvlært. Min gamle lærer gjorde det veldig vanskelig å henge med...les mer
Jeg brukte mattevideo da jeg måtte ta opp igjen eksamen, selvlært. Min gamle lærer gjorde det veldig vanskelig å henge med. Han var nok flink i matte, men hadde vanskeligheter med å undervise oss som måtte ha det inn med teskje.
Jeg brukte læreboka kombinert med mattevideo. Først fant jeg temaene jeg slet mest med i boken og prøvde å løse de enkleste oppgavene. Om jeg slet, lette jeg dem opp på mattevideo. Der så jeg videoer med eksempeloppgaver, gjerne den samme videoen om og om igjen. Da videoene var sett, prøvde jeg å løse liknende oppgaver fra boken. Jeg gikk aldri videre til vanskeligere oppgaver før det grunnleggende satt. Dette gjentok jeg noen ganger i uka, og det virket fantastisk for meg.
TIPS: du kommer ikke langt om du ikke har god greie på det grunnleggende, så gå aldri videre på vanskeligere oppgaver før du har full Forståelse for grunnkunnskapen. For meg, og for mange andre, går mattematikk fort i glemmeboken. Derfor gjenntok jeg denne prossessen et par ganger i uka, slik at det til slutt satt som et skudd.
Det beste var at jeg på eksamen faktisk forstod en del oppgaver som jeg ikke hadde løst før, fordi grunnleggende kunnskap var på plass og jeg kunne bruke logisk tankegang på nye temaer. Mange sier at matte er logisk, man må bare knekke koden. Jeg er langt i fra noen ekspert, men for første gang i mitt liv som elev følte jeg at jeg klarte dette litt på egenhånd, og det er takket være enkle, tydelige og strukturerte videoer på mattevideo.no. Jeg bestod til slutt matteeksamen med glans, uten en eneste lærer fysisk i nærheten. Lykke til alle i samme sko! Matte kan faktisk trenes.
Eksamenstid 5 timer
Del 1 (Uten hjelpemidler) skal leveres etter 2 timer.
Del 2 (Med hjelpemidler) skal leveres etter senest 5 timer.
DEL 1 - Uten hjelpemidler
Oppgave 1 (2 poeng)
Løs likningssettet
[5x+2y=43x+4y=−6]
Oppgave 2 (1 poeng)
Løs likningen
3⋅10x=3000
Oppgave 3 (2 poeng)
Regn ut og skriv svaret på standardform
0,2⋅10−4+3⋅10−5(0,5⋅106)2
Oppgave 4 (1 poeng)
Vis at
15⋅5−48=3
Oppgave 5 (2 poeng)
Regn ut og skriv svaret så enkelt som mulig
lg1000⋅lg310⋅lg5102⋅lg0,00001
Oppgave 6 (3 poeng)
a) Vis at
x(x+2)(x−4)=x3−2x2−8x
b) Løs likningen
x3−2x2−8x=0
Oppgave 7 (2 poeng)
Løs ulikheten
x2−2x−8≥0
Oppgave 8 (3 poeng)
Funksjonenfer gitt ved
f(x)=x2+kx+4
For hvilke verdier avk har grafen til f
ingen skjæringspunkter med x-aksen
ett skjæringspunkt med x-aksen
to skjæringspunkter med x-aksen
Oppgave 9 (3 poeng)
a) Vis at
3x−3x1x+2+x1=x2−13x2+6x+3
b) Skriv så enkelt som mulig
3x−3x1x+2+x1
Oppgave 10 (4 poeng)
En funksjon f er gitt ved
a) Bestem den gjennomsnittlige vekstfarten til i intervallet f∈[−2,2].
b) Bestem likningen for tangenten til grafen til f i punktet (1,f(1)).
Oppgave 11 (3 poeng)
Tenk deg at du kaster en rød og en blå terning.
Avgjør hvilket av de to alternativene nedenfor som er mest sannsynlig.
Terningene viser samme antall øyne.
Summen av antall øyne er 5 eller mindre.
Oppgave 12 (6 poeng)
I en likesidet trekant er alle sidene like lange og alle vinklene 60° . Høyden på en av sidene halverer denne siden.
Høyden deler den likesidete trekanten i to likestore rettvinklete trekanter.
I denne rettvinklete trekanten er vinklene 30° , 60° og 90° . I tillegg er hypotenusen dobbelt så
lang som den minste kateten.
Denne sammenhengen kalles 30° , 60° og 90° - setningen.
Ovenfor ser du to avsnitt fra en lærebok for 10. klasse.
a) Vis at DC=2s3
b) Bruk ΔADC til å vise at sin60∘=23.
I trekanten PQR er PQ=8 og PR=23. Se skissen nedenfor.
c) Bestem arealet av ΔPQR.
d) Vis at tanQ=8−33
Oppgave 13 (4 poeng)
Fire andregradsfunksjoner p , q , r og s er gitt ved
p(x)=x2−2x
q(x)=x2+2x−2
r(x)=4−x2
s(x)=x2−2x−2
Nedenfor ser du seks grafer.
Hvilken graf er grafen til p ?
Hvilken graf er grafen til q ?
Hvilken graf er grafen til r ?
Hvilken graf er grafen til s ?
Husk å begrunne svarene dine.
DEL 2 - Med hjelpemidler
Oppgave 1 (6 poeng)
Tabellen ovenfor viser hvor mye en kroneis kostet noen utvalgte år i perioden fra 1970 til
2017.
a) Legg opplysningene i tabellen ovenfor inn som punkter i et koordinatsystem der x-aksen viser antall år etter 1970 og y-aksen viser pris (kroner).
Funksjonen f er gitt ved
f(x)=0,0054x2+0,26x+0,9,x∈[0,50]
b) Tegn grafen til f i samme koordinatsystem som du brukte i oppgave a).
I resten av denne oppgaven skal du bruke funksjonen f som en modell som viser prisen
f(x) kroner for en kroneis x år etter 1970.
c) Når var prisen for en kroneis 16 kroner, ifølge modellen?
d) Hvor mye har prisen for en kroneis i gjennomsnitt steget med per år fra 1975 til 2015?
Oppgave 2 (4 poeng)
Ved en videregående skole er det 640 elever. I en undersøkelse ble elevene spurt om når de legger seg kvelden før en skoledag.
41 av elevene svarte at de legger seg før klokka 23.
Det viser seg at
54 av elevene som legger seg før klokka 23, har et karaktersnitt over fire
31 av elevene som legger seg etter klokka 23, har et karaktersnitt over fire
a) Lag en krysstabell som illustrerer opplysningene som er gitt ovenfor.
Tenk deg at vi trekker ut en elev ved skolen tilfeldig.
b) Bestem sannsynligheten for at eleven har et karaktersnitt over fire.
Tenk deg at den eleven vi trakk i oppgave b), har et karaktersnitt over fire.
c) Bestem sannsynligheten for at denne eleven legger seg før klokka 23 kvelden før en skoledag.
Oppgave 3 (2 poeng)
Gitt trekanten ovenfor.
Bruk CAS til å bestemme s .
Oppgave 4 (6 poeng)
Figuren ovenfor viser to rettvinklete trekanter, ΔADC og ΔDBC. AC=a, BC=b. AD=c1, CD=h, hvor h er høyden fra C på AB. Maria påstår at høyden h kan uttrykkes på ulike måter:
1) h=a⋅cosu
2) h=b⋅cosv
a) Vis at Maria har rett
For å bestemme arealet T av ΔABC vil Maria regne slik: T=2c1⋅h+2c2⋅h
b) Bruk blant annet resultatet fra oppgave a), og vis at dette uttrykket for arealet kan skrives som
T=2a⋅sinu⋅b⋅cosv+2b⋅sinv⋅a⋅cosu
Mats bruker arealsetningen og får at arealet av trekanten også kan skrives slik:
T=21a⋅b⋅sin(u+v)
c) Bruk dette uttrykket og uttrykket du har for arealet fra oppgave b), til å vise at
sinu+v=sinu⋅cosv+sinv⋅cosu
Oppgave 5 (6 poeng)
En funksjon f er gitt ved
f(x)=x2−6x+8
a) Vis at tangeten til grafen til f i punktet (4,f(4)) er parallell med linjen som går gjennom punktet (2,f(2)) og (6,f(6)).
Nedenfor ser du grafen til en funksjon g gitt ved
g(x)=ax2+bx+c,a=0
b) Bruk CAS til å bestemme stigningstallet til tangenten til grafen til g i punktet
M(2p+q,g(2p+q))
c) Vis at linjen gjennom punktene P(p,g(p)) og Q(q,g(q)) er parallell med tangenten i oppgave b).
Det finnes mange ulike studieteknikker, utfordringen er ofte å finne de som fungerer best for deg. I oversikten under finner du enkelt de beste teknikkene.
Alle våre studietips er laget av vår superelev - med 6 i snitt fra vgs. Ingen av artiklene tar mer enn 5 minutter å lese - slik at du kan starte læringen så fort som mulig.
Hva skjer i hjernen når du lærer?
Du møter noe nytt for første gang
Du kobler den nye tingen med kunnskap du har fra før
Vi varmer opp til polynomdivisjon, ved å se på divisjon av vanlige tall.
×
×
00:00
I det kapittelet vi nå er i, skal vi drive med polynomdivisjon. Og det handler om å dele polynomer på hverandre, altså sånne uttrykk med x eller x i annen eller sånne ting. Men for at vi skal skjønne den metoden, så er det lurt å gå tilbake til noe vi har lært en gang i tiden, nemlig å dele vanlige tall på hverandre, divisjonsalgoritmen som det heter.
+
Quiz section 0
Hva handler polynomdivisjon om?
↻
Å multiplisere polynomer.
Lever svar
Å dele polynomer på hverandre.
Lever svar
Å addere polynomer.
Lever svar
Oppsummer det viktigste på 1-2-3, klikk her for 10 sekunders quiz
Oppsummer det viktigste på 1-2-3
00:26
Så vi tar et eksempel. Vi skal ta to eksempler, men det første er tusen fem hundre og femtisyv delt på ni. La oss bare se hvordan vi gjorde den slags igjen.
+
Quiz section 1
Hvor mange eksempler skal vi gå gjennom først?
↻
Fire
Lever svar
Tre
Lever svar
To
Lever svar
00:38
Da var vel greia at vi finner.
+
Quiz section 2
Hva er det første steget i divisjonsalgoritmen?
↻
Legge sammen divisoren og dividenden.
Lever svar
Finne hvor mange ganger divisoren går opp i de første sifrene.
Lever svar
Multiplisere divisoren med dividenden.
Lever svar
00:43
Vi prøver jo kanskje med en del på ni, men det går liksom ikke.
+
Quiz section 3
Hva gjør vi hvis det første sifferet er mindre enn divisoren?
↻
Stopper delingen.
Lever svar
Skriver ned null.
Lever svar
Tar med neste siffer.
Lever svar
00:48
Det er for lite, så da tar vi med ett siffer til. Femten delt på ni.
+
Quiz section 4
Hva gjør vi når tallet fortsatt er for lite til å dele på divisoren?
↻
Tar med enda et siffer til.
Lever svar
Legger til null i svaret.
Lever svar
Multipliserer divisoren.
Lever svar
00:53
Og da er jo poenget at da skriver vi én fordi det går én gang, sier vi.
+
Quiz section 5
Hva skriver vi i kvotienten når divisoren går én gang opp i tallet?
↻
9
Lever svar
1
Lever svar
0
Lever svar
01:02
Femten delt på ni.
+
Quiz section 6
Hvor mange ganger går 9 opp i 15?
↻
1 gang
Lever svar
2 ganger
Lever svar
3 ganger
Lever svar
01:03
Og så gjør vi sånn. Én gang ni, og så skriver vi bare opp igjen i der.
+
Quiz section 7
Hva gjør vi etter å ha funnet hvor mange ganger divisoren går opp i tallet?
↻
Multipliserer kvotienten med divisoren og skriver resultatet under.
Lever svar
Legger kvotienten til divisoren.
Lever svar
Deler kvotienten på divisoren.
Lever svar
01:09
Og så setter vi en strek sånn, og så minus, ser vi. Det trekker vi fra det.
+
Quiz section 8
Hva gjør vi med resultatet etter multiplikasjonen?
↻
Trekker det fra tallet over.
Lever svar
Legger det til tallet over.
Lever svar
Skriver det som sluttresultat.
Lever svar
01:16
Og da er det sånn at vi tenker nå bare på femten. Femten minus ni, det er vel seks.
+
Quiz section 9
Hva finner vi når vi trekker produktet fra tallet over?
↻
Kvotienten
Lever svar
Divisoren
Lever svar
Resten
Lever svar
01:25
Også henter vi ned et femtall til fordi seks delt på ni går ikke nå, men derimot hvis vi henter det femtitallet som står der oppe, så blir det sekstifem, og så gjør vi noe av det samme. Sekstifem delt på ni.
+
Quiz section 10
Hva gjør vi hvis resten er mindre enn divisoren?
↻
Legger til null i kvotienten.
Lever svar
Henter ned neste siffer fra dividenden.
Lever svar
Avslutter delingen.
Lever svar
01:44
Nå er det ikke noe tall i ni-gangen som er sekstifem. Men vi vet kanskje at sekstitre er i ni-gangen. Det er det største tallet som er nesten sekstifem.
+
Quiz section 11
Hva gjør vi hvis divisoren ikke går opp i tallet nøyaktig?
↻
Avrunder oppover til neste multiplum.
Lever svar
Legger til flere nuller til tallet.
Lever svar
Finner det største multiplum som er mindre enn tallet.
Lever svar
01:54
Det største tallet som er mindre enn sekstifem som er i ni-gangen, og det er sju. Sju ganger ni, så derfor skriver vi sju der. Da sier vi at det går sju ganger. Sju ganger ni, og så skriver vi da sekstitre. Så først sekstifem delt på ni, tar vi det største tallet, så får vi sju. Sju ganger ni, går vi tilbake igjen, og så skriver det vi da får, og så er det samme mølla, det vil si minus.
+
Quiz section 12
Hvorfor skriver vi tallet 7 i kvotienten når vi deler 65 på 9?
↻
Fordi 7 er resten.
Lever svar
Fordi 9 ganger 7 er over 65.
Lever svar
Fordi 9 ganger 7 er det største produktet under 65.
Lever svar
02:23
Sånn.
+
Quiz section 13
Hva gjør vi etter å ha funnet neste siffer i kvotienten?
↻
Gjentar prosessen med subtraksjon og nedhenting av sifre.
Lever svar
Avslutter delingen.
Lever svar
Multipliserer kvotienten med en ny divisor.
Lever svar
02:25
Så tar vi bare sekstifem minus sekstitre, og da får vi to. Og legg merke til at det blir alltid litt mindre enn det som står der oppe, fordi vi har truffet riktig. Hadde vi skrevet seks der i stedet, så hadde vi tatt seks ganger ni, og så hadde vi fått seks ganger ni. Det er vel femtifire da. Da hadde det blitt for mye her nede.
+
Quiz section 14
Hva får vi når vi trekker 63 fra 65?
↻
0
Lever svar
4
Lever svar
2
Lever svar
02:47
Så vi må ha sju der. Sju ganger ni er sekstitre, og så hadde vi to nå, sånn. Og så gjør vi det samme vi gjorde i stad, og det vil si vi henter ned det tallet som står igjen der oppe, henter bare ned et tall. Tjuesju.
+
Quiz section 15
Hvorfor er det viktig å velge det største multiplum som er mindre enn tallet vi deler?
↻
For å minimere resten og fortsette delingen korrekt.
Lever svar
For å få en større kvotient.
Lever svar
For å unngå å få null i resten.
Lever svar
03:01
Tjuesju delt på ni, det er tre.
+
Quiz section 16
Hva gjør vi etter å ha hentet ned det siste sifferet?
↻
Deler det nye tallet på divisoren.
Lever svar
Avslutter regnestykket.
Lever svar
Multipliserer det nye tallet med divisoren.
Lever svar
03:06
Så det gikk opp til og med. Det er en fordel. Tre ganger ni er tjuesju.
+
Quiz section 17
Hva indikerer det når resten blir null?
↻
At delingen går opp.
Lever svar
At vi har gjort en feil.
Lever svar
At vi må fortsette delingen.
Lever svar
03:12
Og så tar vi minus det også, og da blir det null, sånn. Og nå er det ikke noe mer som står igjen der oppe, og det betyr at når vi ikke har mer igjen her oppe, alt har vi liksom hentet ned og delt, samtidig så ble det ingenting til overs. Da gikk stykket opp, så vi kan si at tusen fem hundre og femtisyv delt på ni, det blir etthundreogsyttitre.
+
Quiz section 18
Hva betyr det når det ikke er flere sifre å hente ned?
↻
At delingen er ferdig.
Lever svar
At vi må legge til desimaler.
Lever svar
At vi starter på nytt.
Lever svar
03:40
La oss si.
+
Quiz section 19
Hva skjer hvis delingen ikke går opp?
↻
Vi får en rest.
Lever svar
Vi får en feil kvotient.
Lever svar
Vi må dele på nytt.
Lever svar
03:43
Delingen ikke går opp.
+
Quiz section 20
03:45
Når delingen ikke går opp, da får vi noe som heter rest.
+
Quiz section 21
Hva kalles tallet som blir igjen når delingen ikke går opp?
↻
Rest
Lever svar
Kvotient
Lever svar
Divisor
Lever svar
03:49
Det som blir igjen.
+
Quiz section 22
03:51
Og hvis vi tar nesten det samme da, tusen fem hundre og femtini delt på ni.
+
Quiz section 23
Hva skjer hvis vi deler 1559 på 9?
↻
Vi får en rest.
Lever svar
Delingen går opp uten rest.
Lever svar
Vi får null i kvotient.
Lever svar
03:58
Da vil jo ting være veldig likt i starten fordi vi kan begynne med femten delt på ni. Det gikk én gang. To ganger ni er atten, det blir for stort, ikke sant, så én gang ni er ni, og så tok vi minus det.
+
Quiz section 24
04:13
Femten minus ni. Da fikk vi seks, hentet ned. Så nå får vi repetert det vi gjorde der oppe egentlig. Sekstifem delt på ni. Det gikk en sju ganger var det vel.
+
Quiz section 25
04:24
Sju ganger ni, det blir sekstitre.
+
Quiz section 26
04:27
Minus.
+
Quiz section 27
04:29
Sånn. Sekstifem minus sekstitre, det er to, men nå står det ikke sju, nå står det ni. Så nå blir det tjueni.
+
Quiz section 28
04:38
Tjueni delt på.
+
Quiz section 29
04:41
Ni, det går fortsatt tre ganger. [..] Hadde vi tatt fire, så hadde vi fått trettiseks, så det blir for mye. Så det blir tre. Tre ganger ni, tjuesju. Men nå skal vi se hva som skjer nå.
+
Quiz section 30
04:58
Nå får vi en to, og nå er det ikke mer der oppe.
+
Quiz section 31
05:03
Vi kunne gjort sånn at vi bare lager et komma der, og så henter han ned null. Det hadde gått an, men alternativet er det jeg gjør nå, å bare si at det blir igjen noe.
+
Quiz section 32
05:17
Ja, pluss.
+
Quiz section 33
Hva kan vi gjøre hvis vi ønsker å fortsette delingen etter å ha fått en rest?
↻
Legge til et komma og null i dividenden.
Lever svar
Avslutte delingen.
Lever svar
Multiplisere resten med divisoren.
Lever svar
05:20
To delt på.
+
Quiz section 34
05:24
Ni. Pluss to niendedeler.
+
Quiz section 35
Hvordan kan vi uttrykke resten som en brøk?
↻
Divisoren delt på resten.
Lever svar
Dividenden delt på resten.
Lever svar
Resten delt på divisoren.
Lever svar
05:27
På ungdomsskolen kanskje du skrev etthundreogsyttitre og to ned, eller uten det plusstegn.
+
Quiz section 36
Hva betyr det å skrive svaret som et blandet tall?
Hva kaller vi et matematisk uttrykk med variabler og koeffisienter?
En likning
Lever svar
Et polynom
Lever svar
En brøk
Lever svar
00:40
Hva kalles verdier av x som gir polynomet verdien null?
Koeffisienter
Lever svar
Nullpunkter
Lever svar
Røtter av en likning
Lever svar
00:42
Hvis (x - a) er en faktor, hva er a?
En vilkårlig konstant
Lever svar
Et nullpunkt
Lever svar
En koeffisient
Lever svar
01:10
Hva blir summen når du legger til det motsatte av et tall?
Det opprinnelige tallet
Lever svar
Null
Lever svar
Ett
Lever svar
01:18
Hvordan sjekker man om et tall er et nullpunkt for et polynom?
Legg til 1 og se om det øker
Lever svar
Sett inn tallet og sjekk om resultatet er 0
Lever svar
Ignorer tallet
Lever svar
01:24
Hvordan finner man verdien av et polynom for en bestemt x?
Trekke fra x to ganger
Lever svar
Erstatte x med verdien og regne ut
Lever svar
Legge til koeffisientene
Lever svar
01:39
Hva betyr det hvis P(a) = 0?
a er en tilfeldig konstant
Lever svar
x = a er et nullpunkt
Lever svar
Polynomet er alltid 0
Lever svar
01:52
Hvis x = a er et nullpunkt, hva kan polynomet deles på?
a - x
Lever svar
x - a
Lever svar
x + a
Lever svar
02:20
Må man bruke et bestemt nullpunkt for å dele polynomet?
Ja, alltid det største
Lever svar
Nei, alle nullpunkter fungerer
Lever svar
Ja, alltid det minste
Lever svar
02:35
Kan et polynom med flere nullpunkter deles på (x - hver av disse nullpunktene)?
Nei
Lever svar
Ja
Lever svar
Bare noen ganger
Lever svar
02:58
Hvis a er et nullpunkt, kan polynomet deles på (x - a)?
Nei
Lever svar
Ja
Lever svar
Bare hvis a er positiv
Lever svar
03:09
Hvordan sjekker man om (x - a) deler et polynom P(x)?
Test om P(a)=1
Lever svar
Test om P(a)=0
Lever svar
Test om P(x)=a
Lever svar
03:34
Hva kan polynomdivisjon brukes til?
Å legge sammen tall
Lever svar
Å faktorisere polynomer
Lever svar
Å gjøre om brøker
Lever svar
00:00
24 delt på 8 blir?
6
Lever svar
3
Lever svar
4
Lever svar
00:23
Hva betyr "ekvivalent" her?
At to uttrykk er likeverdige
Lever svar
At tallene er ulike
Lever svar
At det er et tilfeldig symbol
Lever svar
00:37
Hva ble gjort med uttrykkene?
De ble ganget
Lever svar
De ble subtrahert
Lever svar
De ble delt
Lever svar
01:17
Hvilke termer nevnes men trenger ikke pugges?
Dividende og devisor
Lever svar
Koeffisient og konstant
Lever svar
Sum og differens
Lever svar
01:20
Hvilken aritmetisk setning sammenlignes med polynomdivisjon?
24/8=3
Lever svar
2+2=4
Lever svar
10-3=7
Lever svar
01:28
Hva får vi ved å faktorisere et tredjegradspolynom?
Flere faktorer
Lever svar
Ingen faktorer
Lever svar
Bare en faktor
Lever svar
01:34
Hvilke tall ble valgt for faktoriseringen?
3 og 4
Lever svar
2 og 6
Lever svar
1 og 12
Lever svar
02:20
Hvor mange faktorer kan tredjegradspolynomet splittes i?
3
Lever svar
2
Lever svar
4
Lever svar
02:46
Hva er et eksempel på en førstepartsfaktor?
x - 1
Lever svar
x + 2
Lever svar
x - 4
Lever svar
02:55
Hvilke to faktorer fikk vi fra andregradspolynomet?
x - 3 og x + 4
Lever svar
x - 2 og x + 6
Lever svar
x - 1 og x + 5
Lever svar
03:00
Hva handler polynomdivisjon om?
Å dele polynomer på hverandre.
Lever svar
Å multiplisere polynomer.
Lever svar
Å addere polynomer.
Lever svar
00:00
Hvor mange eksempler skal vi gå gjennom først?
To
Lever svar
Tre
Lever svar
Fire
Lever svar
00:26
Hva er det første steget i divisjonsalgoritmen?
Finne hvor mange ganger divisoren går opp i de første sifrene.
Lever svar
Multiplisere divisoren med dividenden.
Lever svar
Legge sammen divisoren og dividenden.
Lever svar
00:38
Hva gjør vi hvis det første sifferet er mindre enn divisoren?
Tar med neste siffer.
Lever svar
Skriver ned null.
Lever svar
Stopper delingen.
Lever svar
00:43
Hva gjør vi når tallet fortsatt er for lite til å dele på divisoren?
Tar med enda et siffer til.
Lever svar
Legger til null i svaret.
Lever svar
Multipliserer divisoren.
Lever svar
00:48
Hva skriver vi i kvotienten når divisoren går én gang opp i tallet?
1
Lever svar
0
Lever svar
9
Lever svar
00:53
Hvor mange ganger går 9 opp i 15?
1 gang
Lever svar
2 ganger
Lever svar
3 ganger
Lever svar
01:02
Hva gjør vi etter å ha funnet hvor mange ganger divisoren går opp i tallet?
Multipliserer kvotienten med divisoren og skriver resultatet under.
Lever svar
Legger kvotienten til divisoren.
Lever svar
Deler kvotienten på divisoren.
Lever svar
01:03
Hva gjør vi med resultatet etter multiplikasjonen?
Trekker det fra tallet over.
Lever svar
Legger det til tallet over.
Lever svar
Skriver det som sluttresultat.
Lever svar
01:09
Hva finner vi når vi trekker produktet fra tallet over?
Resten
Lever svar
Kvotienten
Lever svar
Divisoren
Lever svar
01:16
Hva gjør vi hvis resten er mindre enn divisoren?
Henter ned neste siffer fra dividenden.
Lever svar
Avslutter delingen.
Lever svar
Legger til null i kvotienten.
Lever svar
01:25
Hva gjør vi hvis divisoren ikke går opp i tallet nøyaktig?
Finner det største multiplum som er mindre enn tallet.
Lever svar
Legger til flere nuller til tallet.
Lever svar
Avrunder oppover til neste multiplum.
Lever svar
01:44
Hvorfor skriver vi tallet 7 i kvotienten når vi deler 65 på 9?
Fordi 9 ganger 7 er det største produktet under 65.
Lever svar
Fordi 9 ganger 7 er over 65.
Lever svar
Fordi 7 er resten.
Lever svar
01:54
Hva gjør vi etter å ha funnet neste siffer i kvotienten?
Gjentar prosessen med subtraksjon og nedhenting av sifre.
Lever svar
Avslutter delingen.
Lever svar
Multipliserer kvotienten med en ny divisor.
Lever svar
02:23
Hva får vi når vi trekker 63 fra 65?
2
Lever svar
0
Lever svar
4
Lever svar
02:25
Hvorfor er det viktig å velge det største multiplum som er mindre enn tallet vi deler?
For å minimere resten og fortsette delingen korrekt.
Lever svar
For å få en større kvotient.
Lever svar
For å unngå å få null i resten.
Lever svar
02:47
Hva gjør vi etter å ha hentet ned det siste sifferet?
Deler det nye tallet på divisoren.
Lever svar
Avslutter regnestykket.
Lever svar
Multipliserer det nye tallet med divisoren.
Lever svar
03:01
Hva indikerer det når resten blir null?
At delingen går opp.
Lever svar
At vi har gjort en feil.
Lever svar
At vi må fortsette delingen.
Lever svar
03:06
Hva betyr det når det ikke er flere sifre å hente ned?
At delingen er ferdig.
Lever svar
At vi må legge til desimaler.
Lever svar
At vi starter på nytt.
Lever svar
03:12
Hva skjer hvis delingen ikke går opp?
Vi får en rest.
Lever svar
Vi får en feil kvotient.
Lever svar
Vi må dele på nytt.
Lever svar
03:40
Hva kalles tallet som blir igjen når delingen ikke går opp?
Rest
Lever svar
Kvotient
Lever svar
Divisor
Lever svar
03:45
Hva skjer hvis vi deler 1559 på 9?
Vi får en rest.
Lever svar
Delingen går opp uten rest.
Lever svar
Vi får null i kvotient.
Lever svar
03:51
Hva kan vi gjøre hvis vi ønsker å fortsette delingen etter å ha fått en rest?
Legge til et komma og null i dividenden.
Lever svar
Avslutte delingen.
Lever svar
Multiplisere resten med divisoren.
Lever svar
05:17
Hvordan kan vi uttrykke resten som en brøk?
Resten delt på divisoren.
Lever svar
Dividenden delt på resten.
Lever svar
Divisoren delt på resten.
Lever svar
05:24
Hva betyr det å skrive svaret som et blandet tall?
Å kombinere heltallsdelen med brøkdelen.
Lever svar
Å skrive svaret kun som en brøk.
Lever svar
Å ignorere resten.
Lever svar
05:27
Hvoran begynne utregningen av (2x3−3x−7):(x−1) ?
Det venstre leddet i 2x3−3x−7 delt på det venstre leddet i x−1
Lever svar
Det høyre leddet i 2x3−3x−7 delt på det høyre leddet i x−1
Lever svar
Det venstre leddet i 2x3−3x−7 delt på det høyre leddet i x−1
Lever svar
×
Riktig svar!
Noe man bare må huske
Tilbakestill oppgaven som uløst
×
Takk for at du forsøkte, men dette er feil svaralternativ.
Tilbakestill oppgaven som uløst
×
Takk for at du forsøkte, men dette er feil svaralternativ.
Tilbakestill oppgaven som uløst
Hvis et polynom P(x) er delelig med (x+2), er da (x+2) en faktor i P(x) ?
Ja
Lever svar
Nei
Lever svar
Noen ganger, men det trenger ikke være slik.
Lever svar
×
Riktig svar!
Hvis du tenker deg en brøk med P(x) over (x+2), og man kan da forkorte bort (x+2) (siden P(x) er delelig på (x+2)), så må det være (x+2) faktor over brøkstreken også. Altså at (x+2) er en del av P(x).
Tilbakestill oppgaven som uløst
×
Takk for at du forsøkte, men dette er feil svaralternativ.
Tilbakestill oppgaven som uløst
×
Takk for at du forsøkte, men dette er feil svaralternativ.
Tilbakestill oppgaven som uløst
Du skal regne ut 623 : 9 med blyant og papir. Hvordan starte?
Begynner med 23 : 9
Lever svar
Finner det største tallet man kan gange 9 med og få maksimalt 62
Lever svar
Finner det minste tallet man kan gange 9 med å få minst 62
Lever svar
×
Takk for at du forsøkte, men dette er feil svaralternativ.
Tilbakestill oppgaven som uløst
×
Riktig svar!
Da vil man sitte igjen med en rest som man kan regne videre på.
Tilbakestill oppgaven som uløst
×
Takk for at du forsøkte, men dette er feil svaralternativ.
Tilbakestill oppgaven som uløst
Hvis et polynom P(x) har nullpnktet x=a så er P(x) delelig med
a
Lever svar
(x-a)
Lever svar
(x+a)
Lever svar
×
Takk for at du forsøkte, men dette er feil svaralternativ.
Tilbakestill oppgaven som uløst
×
Riktig svar!
Man kan se dette fra nullpunktformelen til en andregradsfunksjon: a (x - x_1) (x - x_2).
Tilbakestill oppgaven som uløst
×
Takk for at du forsøkte, men dette er feil svaralternativ.
Flott opplegg og undervisning😊
Tusen takk!
Gjorde unna R2 som privatist på et halvt år!! Mattevideo har gjort det mye lettere å fordøye et så tungt pensum på så kort tid. Tusen takk for hjelpa!!😊
Bra undervisning!
Jeg er fornøyd med videone deres det har hjulpet meg til å bestå matten i både Vgs og Uni . Så takk😊
Meget bra!
Tusen takk. Veldig flink lærer. Gode forklaringer.
Helt topp :D
Bra side.
Kjempebra!😊
Bra side. Veldig gode forklaringer😊
Tror dette kommer til å redde meg på noen prøver fremover. Takk! :D
takk for hjelpen
Takk for læreren av denne siden. Det er utrolig en bra side, fikk meg mye. Tusen hjertelig takk
Kan trygt anbefale Arne Hovland! Beste læreren jeg har hatt i løpet av drøyt 20 år med utdanning.
takk for denne siden :D min 1T mattelærer snakker så monotont og gjør matte så kjedelig at interessen svinner vekk og jeg sovner etter 5 minutter.