×
VGS matematikk
1 - 2 - 3 klasse

Lær VGS matten fra A til Å
med de beste metodene

Enkelt å
holde fokus

Forstå det
vanskelige

Få god
oversikt

Øv på
riktig tema

Få hjelp når
du stopper opp

Anne-Lise Frivold Svendsen

Flott opplegg og undervisning😊

Karina Tellmann Marthinussen

Tusen takk!

Ruben Flatås

Gjorde unna R2 som privatist på et halvt år!! Mattevideo har gjort det mye lettere å fordøye et så tungt pensum på så kort tid. Tusen takk for hjelpa!!😊

Vilde Ågotnes

Bra undervisning!

Hamdi A Ahmed

Jeg er fornøyd med videone deres det har hjulpet meg til å bestå matten i både Vgs og Uni . Så takk😊

Halvard Balto

Meget bra!

Halil Ibrahim Keser

Tusen takk. Veldig flink lærer. Gode forklaringer.

Marte Forsberg

Helt topp :D

Jon Mills

Bra side.

Kirsti Beate Årsandøy

Kjempebra!😊

Mari Bertelsen

Bra side. Veldig gode forklaringer😊

Selma Voss

Tror dette kommer til å redde meg på noen prøver fremover. Takk! :D

Caja Magnussen

takk for hjelpen

Abdi Omar

Takk for læreren av denne siden. Det er utrolig en bra side, fikk meg mye. Tusen hjertelig takk

Olav Lunde Arneberg

Kan trygt anbefale Arne Hovland! Beste læreren jeg har hatt i løpet av drøyt 20 år med utdanning.

Daniel Gabrielsen

takk for denne siden :D min 1T mattelærer snakker så monotont og gjør matte så kjedelig at interessen svinner vekk og jeg sovner etter 5 minutter.

Kassi 17 år - har eksamen i R1 til våren.
Min lærer går litt for raskt gjennom r1 pensum, noe som gjør at jeg trenger repetisjon av de vanskeligste emnene...les mer
Liam 34 år - har eksamen i R2 til jul.
Jeg kjøpte medlemskap fordi jeg ønsket forklaring via video og tilgang på "lærer" hele døgnet. Mattevideo er...les mer
Oda 16 år - har eksamen i 1T til våren.
Jeg ble abonnement hos mattevideo fordi jeg slet med å forstå pensum i 1T. Jeg ønsket å prøve, for å se...les mer
Nicolai 21 år - har eksamen i R2 til sommeren.
Jeg ble medlem for å forbedre meg, og gå dypere inn i spesifikke temaer. Jeg går i 10. klasse og tar forsert løp...les mer
Daniel 15 år - har eksamen i 1t til våren.
Jeg ble medlem for å forbedre meg, og gå dypere inn i spesifikke temaer. Jeg går i 10. klasse og tar forsert løp...les mer
June 20 år - preppet til eksamen.
Jeg brukte mattevideo da jeg måtte ta opp igjen eksamen, selvlært. Min gamle lærer gjorde det veldig vanskelig å henge med...les mer
Velg ditt fag
1T er et studieretningsfag på Vg1-nivå. 1T står for "Teoretisk matematikk".
Hele læreplan fra A til Å
Videoundervsining alle temaer
Korte og effektive selvtester
Vi gjennomgår eksamen
Organiser temaene etter ønsket lærebok
Kapittelinndeling: Mattevideo.no 1T
×
Organiser innholdet etter din lærebok
Organiser videoer med ønskede ikoner
Organiser selvtester med ønskede ikoner
Tall
, curr: 1t, book: 669
13:38
04:08
14:14
17:07
06:08
10:46
11:03
18:32
06:22
06:09
08:53
13:34
03:24
02:14
09:01
06:58
13:36
Algebra og likninger
, curr: 1t, book: 669
09:31
09:42
31:41
17:20
15:51
18:37
21:05
09:34
12:34
10:38
19:29
08:10
04:38
17:21
21:04
10:37
06:25
25:56
03:33
14:39
03:25
21:34
34:11
06:32
Funksjoner
, curr: 1t, book: 669
04:40
02:24
22:42
36:54
28:35
13:29
21:32
29:30
21:40
05:10
09:41
23:02
07:12
13:12
05:59
05:15
07:46
09:27
11:51
10:46
Ulikheter og linkningssystmer
, curr: 1t, book: 669
24:31
20:52
04:31
36:41
03:51
06:44
Trigonometri
, curr: 1t, book: 669
09:22
23:59
12:04
10:45
19:57
29:36
16:30
02:48
12:40
47:53
18:08
09:08
Modellering
, curr: 1t, book: 669
23:45
25:04
35:42
14:30
12:58
26:12
18:07
14:26
19:41
Eksamenstid 5 timer Del 1 (Uten hjelpemidler) skal leveres etter 2 timer. Del 2 (Med hjelpemidler) skal leveres etter senest 5 timer.
DEL 1 - Uten hjelpemidler

Oppgave 1 (2 poeng)

 
Løs likningssettet

[5x+2y=43x+4y=6]{ \begin{bmatrix} 5x+2y=4 \\ 3x+4y=-6 \end{bmatrix}}

 

Oppgave 2 (1 poeng)

 
Løs likningen

310x=3000{3 \cdot 10^x = 3000 }

 

Oppgave 3 (2 poeng)

 
Regn ut og skriv svaret på standardform

(0,5106)20,2104+3105{\frac{(0,5 \cdot 10^6)^2}{0,2 \cdot 10^{-4} + 3 \cdot 10^{-5}}}

 

Oppgave 4 (1 poeng)

 
Vis at

15548=3{\sqrt{15 } \cdot \sqrt{5} - \sqrt{48} = \sqrt{3} }  

Oppgave 5 (2 poeng)

 
Regn ut og skriv svaret så enkelt som mulig

lg1000lg103lg1025lg0,00001{\lg{1000} \cdot \lg{\sqrt[3]{10} \cdot \lg{\sqrt[5]{10^2}} \cdot \lg{0,00001}}}

 

Oppgave 6 (3 poeng)

a) Vis at

x(x+2)(x4)=x32x28xx(x+2)(x-4) = x^3 - 2x^2 - 8x

b) Løs likningen

x32x28x=0x^3-2x^2-8x=0

 

Oppgave 7 (2 poeng)

Løs ulikheten

x22x80x^2-2x-8 \geq 0

 

Oppgave 8 (3 poeng)

Funksjonenf{ f }er gitt ved

f(x)=x2+kx+4{f(x)=x^2+kx+4}

For hvilke verdier avk{ k} har grafen til f{ f }
  • ingen skjæringspunkter med x-aksen
  • ett skjæringspunkt med x-aksen
  • to skjæringspunkter med x-aksen
 

Oppgave 9 (3 poeng)

a) Vis at

x+2+1xx313x=3x2+6x+3x21{\frac{x+2+\frac{1}{x}}{\frac{x}{3} - \frac{1}{3x}} = \frac{3x^2+6x+3}{x^2-1}}

b) Skriv så enkelt som mulig

x+2+1xx313x{\frac{x+2+\frac{1}{x}}{\frac{x}{3} - \frac{1}{3x}}}

 

Oppgave 10 (4 poeng)

En funksjon f{ f } er gitt ved

a) Bestem den gjennomsnittlige vekstfarten til i intervallet f[2,2]{f \in \left[ -2, 2 \right]}.

b) Bestem likningen for tangenten til grafen til f{f} i punktet (1,f(1)){ (1, f (1))}.

 

Oppgave 11 (3 poeng)

Tenk deg at du kaster en rød og en blå terning.
Avgjør hvilket av de to alternativene nedenfor som er mest sannsynlig.
  • Terningene viser samme antall øyne.
  • Summen av antall øyne er 5 eller mindre.
 

Oppgave 12 (6 poeng)

 

I en likesidet trekant er alle sidene like lange og alle vinklene 60° . Høyden på en av sidene halverer denne siden.

Høyden deler den likesidete trekanten i to likestore rettvinklete trekanter.

I denne rettvinklete trekanten er vinklene 30° , 60° og 90° . I tillegg er hypotenusen dobbelt så lang som den minste kateten.

Denne sammenhengen kalles 30° , 60° og 90° - setningen. Ovenfor ser du to avsnitt fra en lærebok for 10. klasse.
a) Vis at DC=s32{ DC = \frac{s\sqrt{3}}{2}}
b) Bruk ΔADC{\Delta{ADC} } til å vise at sin60=32\sin{60^{\circ}} = \frac{\sqrt{3}}{2}.
I trekanten PQR{PQR} er PQ=8{PQ = 8} og PR=23{PR = 2 \sqrt{3} }. Se skissen nedenfor.

c) Bestem arealet av ΔPQR{\Delta{PQR}}.
d) Vis at tanQ=383{ \tan {Q} = \frac {3}{8- \sqrt{3}}}  

Oppgave 13 (4 poeng)

  Fire andregradsfunksjoner p , q , r og s er gitt ved
  • p(x)=x22x{p(x) = x^2 - 2x}
  • q(x)=x2+2x2{q(x) = x^2 + 2x - 2}
  • r(x)=4x2{r(x) = 4 - x^2}
  • s(x)=x22x2{s(x) = x^2 - 2x - 2}
Nedenfor ser du seks grafer. Hvilken graf er grafen til p ? Hvilken graf er grafen til q ? Hvilken graf er grafen til r ? Hvilken graf er grafen til s ? Husk å begrunne svarene dine.

 

DEL 2 - Med hjelpemidler  

Oppgave 1 (6 poeng)

 

Tabellen ovenfor viser hvor mye en kroneis kostet noen utvalgte år i perioden fra 1970 til 2017.

a) Legg opplysningene i tabellen ovenfor inn som punkter i et koordinatsystem der x-aksen viser antall år etter 1970 og y-aksen viser pris (kroner).

Funksjonen f er gitt ved     f(x)=0,0054x2+0,26x+0,9    ,    x[0,50]\ \ \ \ f(x)=0,0054x^2 + 0,26x + 0,9 \ \ \ \ , \ \ \ \ x \in {\left[ 0,50 \right]}

b) Tegn grafen til f{f} i samme koordinatsystem som du brukte i oppgave a).

I resten av denne oppgaven skal du bruke funksjonen f{f} som en modell som viser prisen f(x){f(x)} kroner for en kroneis x{x} år etter 1970.

c) Når var prisen for en kroneis 16 kroner, ifølge modellen?

d) Hvor mye har prisen for en kroneis i gjennomsnitt steget med per år fra 1975 til 2015?

 

Oppgave 2 (4 poeng)

  Ved en videregående skole er det 640 elever. I en undersøkelse ble elevene spurt om når de legger seg kvelden før en skoledag.
  • 14{\frac{1}{4}} av elevene svarte at de legger seg før klokka 23.
Det viser seg at
  • 45{\frac{4}{5}} av elevene som legger seg før klokka 23, har et karaktersnitt over fire
  • 13{\frac{1}{3}} av elevene som legger seg etter klokka 23, har et karaktersnitt over fire

a) Lag en krysstabell som illustrerer opplysningene som er gitt ovenfor.

Tenk deg at vi trekker ut en elev ved skolen tilfeldig.

b) Bestem sannsynligheten for at eleven har et karaktersnitt over fire.

Tenk deg at den eleven vi trakk i oppgave b), har et karaktersnitt over fire.

c) Bestem sannsynligheten for at denne eleven legger seg før klokka 23 kvelden før en skoledag.

 

Oppgave 3 (2 poeng)

 

Gitt trekanten ovenfor.
Bruk CAS til å bestemme s .  

Oppgave 4 (6 poeng)

 

Figuren ovenfor viser to rettvinklete trekanter, ΔADC{\Delta{ADC}} og ΔDBC{\Delta{DBC}}. AC=a{AC = a}, BC=b{BC = b}. AD=c1{AD = c_{1}}, CD=h{CD = h}, hvor h{h} er høyden fra C{C}AB{AB}. Maria påstår at høyden h{h} kan uttrykkes på ulike måter:
  • 1) h=acosuh=a \cdot \cos{u}
  • 2) h=bcosvh = b \cdot \cos{v}

a) Vis at Maria har rett

For å bestemme arealet T{T} av ΔABC{\Delta{ABC}} vil Maria regne slik: T=c1h2+c2h2{ T = \frac{c_{1} \cdot h}{2} + \frac{c_{2} \cdot h}{2}}

b) Bruk blant annet resultatet fra oppgave a), og vis at dette uttrykket for arealet kan skrives som

      T=asinubcosv2+bsinvacosu2\ \ \ \ \ \ {T=\frac{a \cdot \sin{u} \cdot b \cdot \cos{v}}{2} + \frac{b \cdot \sin{v} \cdot a \cdot \cos{u}}{2}} Mats bruker arealsetningen og får at arealet av trekanten også kan skrives slik:       T=12absin(u+v)\ \ \ \ \ \ {T=\frac{1}{2}a \cdot b \cdot \sin{(u + v)}}

c) Bruk dette uttrykket og uttrykket du har for arealet fra oppgave b), til å vise at

      sinu+v=sinucosv+sinvcosu\ \ \ \ \ \ {\sin{u+v} = \sin{u} \cdot \cos{v} + \sin{v} \cdot \cos{u}}  

Oppgave 5 (6 poeng)

  En funksjon f er gitt ved       f(x)=x26x+8\ \ \ \ \ \ {f(x)=x^2 - 6x + 8}

a) Vis at tangeten til grafen til f{f} i punktet (4,f(4))(4, f(4)) er parallell med linjen som går gjennom punktet (2,f(2))(2, f(2)) og (6,f(6))(6, f(6)).

Nedenfor ser du grafen til en funksjon g{g} gitt ved       g(x)=ax2+bx+c    ,    a0\ \ \ \ \ \ {g(x)=ax^2 + bx + c \ \ \ \ , \ \ \ \ a \neq 0}

b) Bruk CAS til å bestemme stigningstallet til tangenten til grafen til g i punktet

      M(p+q2,g(p+q2))\ \ \ \ \ \ {M \left(\frac{p+q}{2}, g(\frac{p+q}{2}) \right)}

c) Vis at linjen gjennom punktene P(p,g(p)) og Q(q,g(q)) er parallell med tangenten i oppgave b).

 
Gratis Prøvesmak
Superteknikker
En til en veiledning
1T
 - Kapittelinndeling: Mattevideo.no 1T (oppdatert læreplan)
 - Algebra og likninger
 - Regning med formler
×
08:10
Teori 1
Vi ser på fire forskjellige formler. 1t_244
×
04:38
Oppgave 1
Vi løser noen oppgaver basert på formelen for gjennomsnittsfart:

            v=stv={\frac{s}{t}}
Skjul video ▼
Vis video ▲
Selvtester og oppgaver for mengdetrening
10 sekunders quiz
Eksamensoppgaver
×
Hva er formelen for arealet av en trekant?
Grunnlinje ganger høyde delt på to
Lever svar
Grunnlinje ganger høyde
Lever svar
Grunnlinje pluss høyde delt på to
Lever svar
00:00
Hva er formelen for volumet av en sylinder?
Pi ganger radius i annen ganger høyde
Lever svar
Pi ganger radius ganger høyde
Lever svar
Pi ganger diameter i annen ganger høyde
Lever svar
00:12
Hva er tilnærmet verdi av pi?
3,14
Lever svar
2,71
Lever svar
1,62
Lever svar
00:22
Hva representerer h i formelen for volumet av en sylinder?
Høyden til sylinderen
Lever svar
Radien til sylinderen
Lever svar
Omkretsen av grunnflaten
Lever svar
00:28
Hva er formelen for gjennomsnittsfart?
Strekning delt på tid
Lever svar
Tid delt på strekning
Lever svar
Fart ganger tid
Lever svar
00:37
Hva sier Ohms lov?
Spenning er lik resistans ganger strøm
Lever svar
Strøm er lik spenning delt på resistans
Lever svar
Resistans er lik strøm ganger spenning
Lever svar
00:53
Hva er felles for alle disse ligningene?
De har et likhetstegn med uttrykk på begge sider
Lever svar
De inneholder alltid pi og h
Lever svar
De brukes kun i geometri
Lever svar
01:07
Hvor mange oppgavetyper skal vi se på?
Tre
Lever svar
To
Lever svar
Fire
Lever svar
01:31
Hva er den første oppgaven?
Finne arealet av en trekant med gitt grunnlinje og høyde
Lever svar
Finne grunnlinjen med gitt areal og høyde
Lever svar
Finne høyden med kjent areal og grunnlinje
Lever svar
01:46
Hva er den andre oppgaven?
Finne grunnlinjen i en trekant med kjent areal og høyde
Lever svar
Finne høyden i en trekant med kjent areal og grunnlinje
Lever svar
Finne arealet med gitt grunnlinje og høyde
Lever svar
01:55
Hva er den tredje oppgaven?
Lage et uttrykk for høyden med kjent areal og grunnlinje
Lever svar
Finne grunnlinjen med kjent høyde og areal
Lever svar
Beregne volumet av en sylinder
Lever svar
02:04
Hvordan beskrives den første oppgaven?
Som en direkte innsettingsoppgave som er lett
Lever svar
Som en avansert algebraisk oppgave
Lever svar
Som en teoretisk diskusjon
Lever svar
02:12
Hvordan er den andre oppgaven i forhold til den første?
Litt vanskeligere
Lever svar
Mye lettere
Lever svar
Like enkel
Lever svar
02:24
Hva skal vi gjøre i den tredje oppgaven?
Snu en formel
Lever svar
Regne ut med tall
Lever svar
Tegne en trekant
Lever svar
02:28
Hva er hovedfokuset i den første oppgaven?
Finne arealet med gitt grunnlinje og høyde
Lever svar
Finne høyden med gitt areal og grunnlinje
Lever svar
Finne grunnlinjen med gitt areal og høyde
Lever svar
02:42
Hva er grunnlinjen og høyden i oppgaven?
Grunnlinje 4 cm, høyde 3 cm
Lever svar
Grunnlinje 5 cm, høyde 2 cm
Lever svar
Grunnlinje 3 cm, høyde 4 cm
Lever svar
02:50
Hva gjør vi først i løsningsprosessen?
Skriver opp formelen
Lever svar
Måler trekanten
Lever svar
Gjetter svaret
Lever svar
02:55
Hva betyr det å "sette inn i formelen"?
Erstatte variabler med verdier
Lever svar
Endre formelen
Lever svar
Kopiere formelen
Lever svar
03:04
Hva er verdien av grunnlinjen i eksempelet?
4 cm
Lever svar
3 cm
Lever svar
2 cm
Lever svar
03:07
Hva gjør vi etter å ha satt inn verdiene?
Regner ut multiplikasjonen og dividerer på to
Lever svar
Trekker fra tallene
Lever svar
Legger til tallene
Lever svar
03:27
Hva er produktet av 4 cm og 3 cm?
12 cm²
Lever svar
7 cm²
Lever svar
1 cm²
Lever svar
03:34
Hva blir arealet etter å dele produktet på to?
6 cm²
Lever svar
8 cm²
Lever svar
4 cm²
Lever svar
03:38
Hva er svaret på oppgaven?
Arealet er 6 cm²
Lever svar
Grunnlinjen er 6 cm
Lever svar
Høyden er 6 cm
Lever svar
03:46
Hva er fokus i den andre oppgaven?
Finne grunnlinjen med kjent areal og høyde
Lever svar
Finne høyden med kjent areal og grunnlinje
Lever svar
Beregne arealet med gitt grunnlinje og høyde
Lever svar
03:51
Hva er det første steget i den andre oppgaven?
Skrive opp formelen
Lever svar
Måle trekanten
Lever svar
Gjette grunnlinjen
Lever svar
04:03
Hva vet vi i den andre oppgaven?
Arealet og høyden
Lever svar
Bare grunnlinjen
Lever svar
Bare høyden
Lever svar
04:15
Hva setter vi inn for A i formelen?
10 cm²
Lever svar
4 cm
Lever svar
Grunnlinjen g
Lever svar
04:24
Hva er ukjent i denne oppgaven?
Grunnlinjen g
Lever svar
Høyden h
Lever svar
Arealet A
Lever svar
04:37
Hva er 4 delt på 2?
2
Lever svar
1
Lever svar
4
Lever svar
04:55
Hva står det etter forenklingen?
g ganger 2
Lever svar
g delt på 2
Lever svar
g pluss 2
Lever svar
05:00
Hva gjør vi for å isolere g?
Deler begge sider på 2
Lever svar
Ganger begge sider med g
Lever svar
Legger til 2 på begge sider
Lever svar
05:06
Hva blir verdien av grunnlinjen g?
5 cm
Lever svar
10 cm
Lever svar
2 cm
Lever svar
05:18
Hva er fokus i den tredje oppgaven?
Finne en formel for høyden h
Lever svar
Beregne arealet A
Lever svar
Måle grunnlinjen g
Lever svar
05:32
Hvor plasserer vi den ukjente variabelen i ligningen?
På venstre side
Lever svar
På høyre side
Lever svar
Midt i ligningen
Lever svar
06:06
Hva gjør vi for å fjerne delingen på to?
Ganger begge sider med to
Lever svar
Deler begge sider på to
Lever svar
Legger til to på begge sider
Lever svar
06:31
Hva er neste steg etter å ha fjernet delingen på to?
Dele begge sider på g
Lever svar
Gange begge sider med g
Lever svar
Subtrahere g fra begge sider
Lever svar
06:54
Hva blir den endelige formelen for høyden h?
h = 2A/g
Lever svar
h = A/g
Lever svar
h = g/2A
Lever svar
07:03

Et kvadrat har sider med lengde 6. Kvadratet er delt i tre blå og én hvit trekant. Se figuren ovenfor. Hver av de tre blå trekantene har like stort areal. Den hvite trekanten er likebeint.

Bestem et eksakt uttrykk for arealet av den hvite trekanten.


A=27545A = 27\sqrt{5} - 45

Lever svar

A=45275A = 45 - 27\sqrt{5}

Lever svar

A=81275A = 81 - 27\sqrt{5}

Lever svar
×
Tilbakestill oppgaven som uløst
×
Tilbakestill oppgaven som uløst
×
Tilbakestill oppgaven som uløst
Vi har formelen A=bcA = b c. Hvis b = 3 cm og c er 4 cm, så blir A:
12 cm.
Lever svar
12cm212 cm^2
Lever svar
34 cm
Lever svar
×
Tilbakestill oppgaven som uløst
×
Tilbakestill oppgaven som uløst
×
Tilbakestill oppgaven som uløst

Diagrammet ovenfor viser antall registrerte elbiler i Norge hvert år fra år 2000 til år 2007. Antall registrerte elbiler økte tilnærmet lineært i denne perioden.


a) La x være antall år etter år 2000. Bestem en funksjon f som beskriver utviklingen.


I 2008 var det 2 432 registrerte elbiler i Norge, i 2012 var det 9 580, og i 2014 var det 41 051.

b) Hvordan passer funksjonen fra oppgave a) med disse verdiene?


Se løsning og registrer oppgaven
×

Diagrammet ovenfor viser antall registrerte elbiler i Norge hvert år fra år 2000 til år 2007. Antall registrerte elbiler økte tilnærmet lineært i denne perioden.


a) La x være antall år etter år 2000. Bestem en funksjon f som beskriver utviklingen.


I 2008 var det 2 432 registrerte elbiler i Norge, i 2012 var det 9 580, og i 2014 var det 41 051.

b) Hvordan passer funksjonen fra oppgave a) med disse verdiene?


Se løsning og registrer oppgaven
×

Tenk deg at jorda har form som en kule, og at det er plassert et tau rundt ekvator. Tauet er strammet. Tenk deg så at du forlenger tauet med 20 m og plasserer det slik at det danner en sirkel med sentrum i jordas sentrum.

Vil du da kunne gå under tauet?


Se løsning og registrer oppgaven
×