×
VGS matematikk
1 - 2 - 3 klasse

Lær VGS matten fra A til Å
med de beste metodene

Enkelt å
holde fokus

Forstå det
vanskelige

Få god
oversikt

Øv på
riktig tema

Få hjelp når
du stopper opp

Anne-Lise Frivold Svendsen

Flott opplegg og undervisning😊

Karina Tellmann Marthinussen

Tusen takk!

Ruben Flatås

Gjorde unna R2 som privatist på et halvt år!! Mattevideo har gjort det mye lettere å fordøye et så tungt pensum på så kort tid. Tusen takk for hjelpa!!😊

Vilde Ågotnes

Bra undervisning!

Hamdi A Ahmed

Jeg er fornøyd med videone deres det har hjulpet meg til å bestå matten i både Vgs og Uni . Så takk😊

Halvard Balto

Meget bra!

Halil Ibrahim Keser

Tusen takk. Veldig flink lærer. Gode forklaringer.

Marte Forsberg

Helt topp :D

Jon Mills

Bra side.

Kirsti Beate Årsandøy

Kjempebra!😊

Mari Bertelsen

Bra side. Veldig gode forklaringer😊

Selma Voss

Tror dette kommer til å redde meg på noen prøver fremover. Takk! :D

Caja Magnussen

takk for hjelpen

Abdi Omar

Takk for læreren av denne siden. Det er utrolig en bra side, fikk meg mye. Tusen hjertelig takk

Olav Lunde Arneberg

Kan trygt anbefale Arne Hovland! Beste læreren jeg har hatt i løpet av drøyt 20 år med utdanning.

Daniel Gabrielsen

takk for denne siden :D min 1T mattelærer snakker så monotont og gjør matte så kjedelig at interessen svinner vekk og jeg sovner etter 5 minutter.

Kassi 17 år - har eksamen i R1 til våren.
Min lærer går litt for raskt gjennom r1 pensum, noe som gjør at jeg trenger repetisjon av de vanskeligste emnene...les mer
Liam 34 år - har eksamen i R2 til jul.
Jeg kjøpte medlemskap fordi jeg ønsket forklaring via video og tilgang på "lærer" hele døgnet. Mattevideo er...les mer
Oda 16 år - har eksamen i 1T til våren.
Jeg ble abonnement hos mattevideo fordi jeg slet med å forstå pensum i 1T. Jeg ønsket å prøve, for å se...les mer
Nicolai 21 år - har eksamen i R2 til sommeren.
Jeg ble medlem for å forbedre meg, og gå dypere inn i spesifikke temaer. Jeg går i 10. klasse og tar forsert løp...les mer
Daniel 15 år - har eksamen i 1t til våren.
Jeg ble medlem for å forbedre meg, og gå dypere inn i spesifikke temaer. Jeg går i 10. klasse og tar forsert løp...les mer
June 20 år - preppet til eksamen.
Jeg brukte mattevideo da jeg måtte ta opp igjen eksamen, selvlært. Min gamle lærer gjorde det veldig vanskelig å henge med...les mer
Velg ditt fag
R1 er et studieretningsfag på Vg2-nivå. R1 står for "Realfaglig matematikk".
Hele læreplan fra A til Å
Videoundervsining alle temaer
Korte og effektive selvtester
Vi gjennomgår eksamen
Organiser temaene etter ønsket lærebok
Kapittelinndeling: Sinus R1
×
Organiser innholdet etter din lærebok
Organiser videoer med ønskede ikoner
Organiser selvtester med ønskede ikoner
Potenser og logaritmer
, curr: r1, book: 1624
12:37
05:30
31:02
19:21
21:19
09:42
06:41
18:13
06:43
23:52
30:59
07:08
04:22
02:47
Grenseverdier og derivasjon
, curr: r1, book: 1624
70:46
26:52
07:03
09:43
12:55
16:47
21:05
18:27
13:45
29:58
24:16
06:41
01:15
41:21
11:30
Funksjonsdrøfting
, curr: r1, book: 1624
42:19
26:10
57:03
05:46
05:07
04:44
04:41
06:37
05:27
29:33
11:23
11:58
02:05
Eksponential- og logaritmefunksjoner
, curr: r1, book: 1624
10:51
02:48
10:43
02:01
02:36
14:01
21:41
05:20
31:40
20:07
12:26
Vektorer
, curr: r1, book: 1624
06:24
09:29
03:15
12:41
14:29
05:06
16:12
29:59
06:47
07:52
07:03
21:31
03:53
04:51
Skalarprodukt og parameterframstilling
, curr: r1, book: 1624
17:13
19:05
15:34
31:57
05:16
10:50
27:25
14:51
27:22
04:10
Flere temaer
, curr: r1, book: 1624
76:13
57:41
Eksamenstid 5 timer Del 1 (Uten hjelpemidler) skal leveres etter 2 timer. Del 2 (Med hjelpemidler) skal leveres etter senest 5 timer.

Oppgave 1 (5 poeng)

  Deriver funksjonene

a) f(x)=2x35x+4f(x)=2x^3-5x+4

b) g(x)=x2exg(x)=x^2e^x

c) h(x)=x23h(x)=\sqrt{x^2-3}

   

Oppgave 2 (4 poeng)

  Skriv så enkelt som mulig

a) x23x29+1x+3+5x3{\frac{x^2-3}{x^2-9} + \frac{1}{x+3} + \frac{5}{x-3}}

b) 2ln(a3b2)    3ln(ba2)2 \cdot ln(a^{-3} \cdot b^{2}) \ \ - \ \ 3 \cdot ln(\frac{b}{a^2})

 

Oppgave 3 (4 poeng)

  Tre punkt A(1,6)A(-1,6), B(2,1)B(2,1) og C(4,4)C(4,4) er gitt.

a) Bestem AB\overrightarrow{AB} og AC\overrightarrow{AC}

  Et punkt DD er gitt slik at

b) Bestem koordinatene til DD

Oppgave 4 (6 poeng)

  Funksjonen P er gitt ved

P(x)=2x36x22x+6{P(x)=2x^3-6x^2-2x+6}

 
a) Begrunn at (1,0){(1,0)} er et vendepunkt på grafen til P{P}.
b) Faktoriser P(x){P(x)} i lineære faktorer.
c) Løs likningen

2e3x6e2x2ex+6=0{2e^{3x}-6e^{2x}-2e^x+6=0}

 

Oppgave 5 (6 poeng)

 

Hjørnene i en trekant er A(1,0){A(1,0)} , B(6,2){B(6,2)} og C(3,5){C(3,5)} . Midtpunktene på sidene i trekanten er D{D}, E{E} og F{F}. Se figuren.

a) Forklar at koordinatene til punktene D{D}, E{E} og F{F} er

D(92,72){D \big(\frac{9}{2},\frac{7}{2} \big)}, E(2,52){E \big(2, \frac{5}{2} \big)} og F(72,1){F \big(\frac{7}{2}, 1 \big)}

Skjæringspunktet mellom medianene i trekanten er T.

b) Forklar at vi kan skrive AT{\overrightarrow{AT}} på to måter:

AT=sAD    ,    s=R{\overrightarrow{AT} = s \cdot \overrightarrow{AD}} \ \ \ \ , \ \ \ \ s = \mathbb{R}

AT=AB+tBE    ,    t=R{\overrightarrow{AT} = \overrightarrow{AB} + t \cdot \overrightarrow{BE}} \ \ \ \ , \ \ \ \ t = \mathbb{R}

der s og t er reelle tall.

c) Bruk vektorlikningene i oppgave b) til å bestemme s og t. Bestem koordinatene til T.

Oppgave 6 (4 poeng)

  En fabrikk produserer lyspærer. Alle lyspærene blir kontrollert. I kontrollen blir 8,0 % av lyspærene forkastet. Nærmere undersøkelser viser at
  • 92,0 % av de forkastede lyspærene er defekte
  • 2,0 % av de godkjente lyspærene er defekte
a) Vis at sannsynligheten er 9,2 % for at en tilfeldig produsert lyspære er defekt.
b) Bruk Bayes' setning til å bestemme sannsynligheten for at en defekt lyspære blir forkastet i kontrollen.    

Oppgave 7 (7 poeng)

En rettvinklet ΔABC\Delta{ABC} der C=90o\angle{C} = 90^{o} er gitt. Den innskrevne sirkelen har sentrum i S{S} og radius r{r}. Sirkelen tangerer trekanten i punktene D{D}, E{E} og F{F}. Vi setter AC=b{AC = b}, BC=a{BC = a} og AB=c{ AB = c}. Du får oppgitt at BF=BE{BF = BE} og AD=AE{AD = AE}

a) Bruk figuren til å forklare at a=BF+r{a = BF +r} og b=AD+r{b = AD +r}

Av figuren ser vi dessuten at c=AE+BE{c = AE + BE}

b) Vis at a+bc=2r{a + b - c = 2r}

c) Forklare at vi kan skrive arealet T av trekanten på to måter:

T=12ab{T = \frac{1}{2} \cdot a \cdot b} og T=12r(a+b+c){T = \frac{1}{2} \cdot r \cdot (a+b+c)}

d) Bruk resultatene du fant i oppgavene b) og c) til å utlede Pytagoras' setning.

DEL 2 - Med hjelpemidler

Oppgave 1 (6 poeng)

  I en kortstokk er det 52 kort. Kortene er fordelt på de fire fargene hjerter, ruter, spar og kløver. Hver farge har 13 kort fordelt på verdiene 2 til 10, knekt, dame, konge og ess. Tenk deg at du skal trekke tilfeldig fem kort fra kortstokken.

a) Bestem sannsynligheten for at du kommer til å trekke nøyaktig tre kort med verdi 10.

b) Bestem sannsynligheten for at du kommer til å trekke nøyaktig tre kort med samme verdi.

c) Bestem sannsynligheten for at alle kortene du kommer til å trekke, har samme farge.

Figur 1: Ett mulig utfall i oppgave a) Figur 2: Ett mulig utfall i oppgave b) Figur 3: Ett mulig utfall i oppgave c)  

Oppgave 2 (6 poeng)

Posisjonsvektoren til en partikkel er gitt ved

r(t)=[t21,t3t]{\overrightarrow{r}(t)= \left[ t^2-1,t^3-t \right] }

a) Tegn grafen til r{\overrightarrow{r}} når t[32,32]t \in \left[ -\frac{3}{2}, \frac{3}{2} \right].
b) Bestem fertsvektoren v(t){\overrightarrow{v}}(t) og akselerasjonsvektoren a(t){\overrightarrow{a}(t)}.
c) Bruk CAS til å bestemme den minste banefarten til partikkelen.

Oppgave 3 (4 poeng)

En stige på 7,0 m er stilt opp langs en vegg. Stigen danner sammen med veggen og bakken en rettvinkler ΔABC{\Delta{ABC}}. Se figuren. Vi setterAC=x{ AC = x}. Den korteste avstanden fra C{C } til stigen er d{d} meter.

a) Vis at d=x49x27d = {\frac{x \sqrt{49-x^2}}{7} }

b) Bestem x{x} slik at d{d} blir lengst mulig.

Hvor lang er d for denne verdien av x ?

 

 

Oppgave 4 (8 poeng)

  Funksjonen f{f } er gitt ved

f(x)=2x36x2+5x{f(x)=2x^3 - 6x^2 + 5x}

a) Bruk graftegner til å tegne grafen til f{f}.

Grafen tilf{ f} har tre tangenter som går gjennom punktetA(4,3){ A(4, 3)} .

b) Forklar at x-koordinaten til tangeringspunktene må være løsning av likningen

f(x)3x4=f(x){{\frac{f(x)-3}{x-4}} = f'(x)}

c) Bruk CAS til å løse denne likningen. Bestem likningen til hver av tangentene.

La P(a,b){P(a, b)} være et punkt i planet.

d) Hva er det maksimale antallet tangenter grafen til f{f }kan ha som går gjennom P{P }?

Gratis Prøvesmak
Superteknikker
En til en veiledning
R1
 - Kapittelinndeling: Sinus R1 (oppdatert læreplan)
 - Eksponential- og logaritmefunksjoner
 - Vekstfarten ved logistisk vekst
×
03:44
Teori 1
Logistisk modell f(x)=a1+cebxf(x) = {\frac{a}{1} + c \cdot e^{-bx}} hva forteller den deriverte om funksjonen, og bruk den deriverte til å finne hvor den deriverte vokser raskest.r1-2021_06_03_teori11_19858_1500_1661
×
05:58
Teori 2
Logistisk modell a1+ce(bx)\frac{a}{1+ce^{(-bx)}} sammenhengen mellom bæreevnen og den største vekstfarten. Vi finner den ved hjelp av CAS
02:44
Teori 3
Logistisk modell f(x)=a1+cebxf(x) = {\frac{a}{1} + c \cdot e^{-bx}} sammenhengen mellom bæreevnen og den største vekstfarten. Grafisk.
Skjul video ▼
Vis video ▲
Selvtester og oppgaver for mengdetrening
10 sekunders quiz
Eksamensoppgaver
×
Hva beskriver bæreevne?
En grense for en populasjons størrelse
Lever svar
Et tilfeldig tall
Lever svar
En historisk hendelse
Lever svar
00:00
Hva er en eksamen?
En test for å vurdere kunnskap
Lever svar
En type ferietur
Lever svar
Et kjøkkenredskap
Lever svar
00:13
Hva representerer bæreevnen i en modell?
Maksimal stabil populasjonsstørrelse
Lever svar
Et tilfeldig starttall
Lever svar
Et rent dekorativt begrep
Lever svar
00:15
Hva betyr det å "vise" noe i matematikk?
Å bevise eller demonstrere en påstand
Lever svar
Å gjette uten grunnlag
Lever svar
Å ignorere problemet
Lever svar
00:23
Når er vekstfarten størst i en logistisk modell?
Når populasjonen er halvparten av bæreevnen
Lever svar
Når populasjonen er null
Lever svar
Når populasjonen har nådd bæreevnen
Lever svar
00:29
Hva betyr f(x) = a/2 i en slik kurve?
Et vendepunkt med størst vekst
Lever svar
Startpunktet for kurven
Lever svar
Sluttpunktet for kurven
Lever svar
00:35
Hva indikerer en dobbeltderivert lik null?
Et vendepunkt på kurven
Lever svar
En lineær funksjon
Lever svar
Konstant vekst
Lever svar
00:41
Hva er et CAS-verktøy?
Et dataprogram for symbolsk matematikk
Lever svar
En type historisk dokument
Lever svar
Et grafisk tegneprogram for kunst
Lever svar
00:55
Hvorfor bruke CAS?
For å løse komplekse utregninger raskt
Lever svar
For å lage musikkspor
Lever svar
For å oversette språk
Lever svar
01:03
Hva er GeoGebra?
Et program for dynamisk matematikk
Lever svar
Et malingsverktøy
Lever svar
En type musikkinstrument
Lever svar
01:08
Hva kan man gjøre i CAS-modus?
Løse ligninger og derivere symbolsk
Lever svar
Laste opp videoer
Lever svar
Lese nyheter
Lever svar
01:21
Hva er et funksjonsuttrykk?
En formel som beskriver forholdet mellom variabler
Lever svar
En tilfeldig setning
Lever svar
En ren dekorasjon
Lever svar
01:31
Hva betyr f(x)?
En funksjon f anvendt på x
Lever svar
Et konstant tall
Lever svar
En tilfeldig bokstav
Lever svar
01:52
Hva gjør ':=' i en definisjon?
Definerer en funksjon eller variabel entydig
Lever svar
Fjerner en verdi
Lever svar
Legger til et vilkårlig tegn
Lever svar
01:57
Hvorfor er riktig notasjon viktig?
For å unngå misforståelser
Lever svar
For å forvirre leseren
Lever svar
For å skjule meningen
Lever svar
02:01
Hva er e i matematikk?
Den naturlige eksponentialkonstanten
Lever svar
En tilfeldig variabel
Lever svar
Et tegn uten betydning
Lever svar
02:12
Hvorfor bruker vi parenteser?
For å styre rekkefølgen på operasjoner
Lever svar
For å dekorere uttrykk
Lever svar
For å endre tallverdier vilkårlig
Lever svar
02:29
Hva gjør Enter i et CAS-verktøy?
Utfører kommandoen eller beregningen
Lever svar
Bytter språk
Lever svar
Justerer skjermens lysstyrke
Lever svar
02:45
Kan CAS omskrive uttrykk?
Ja, uten å endre betydningen
Lever svar
Nei, aldri
Lever svar
Bare hvis uttrykket er lineært
Lever svar
02:49
Kan to ulike formaterte uttrykk være likeverdige?
Ja, hvis de har samme verdi
Lever svar
Nei, ulike uttrykk betyr alltid noe annet
Lever svar
Kun hvis uttrykkene er helt identiske
Lever svar
02:58
Hva er f''(x)?
Andrederiverten av f
Lever svar
Førstederiverten av f
Lever svar
Bare en konstant
Lever svar
03:00
Hvorfor sjekke derivert og dobbeltderivert?
For å forstå stigning og krumning
Lever svar
For å endre fargen på grafen
Lever svar
For å lage musikk
Lever svar
03:05
Er komplekse uttrykk nødvendigvis gale?
Nei, de kan være korrekte men bare se kompliserte ut
Lever svar
Ja, alltid
Lever svar
Bare hvis de inneholder bokstaven z
Lever svar
03:09
Hva betyr "løs" i matematikk?
Å finne løsningene på en ligning
Lever svar
Å spise maten sin
Lever svar
Å ignorere problemet
Lever svar
03:15
Hva er en ligning?
En påstand om at to uttrykk er like
Lever svar
En tilfeldig setning
Lever svar
Et geografisk punkt
Lever svar
03:17
Hvorfor endre skriftstørrelse?
For bedre lesbarhet
Lever svar
For å endre svarets verdi
Lever svar
For å slette alt
Lever svar
03:26
Hva betyr å justere en innstilling?
Å endre en parameter for å tilpasse behov
Lever svar
Å slette programmet
Lever svar
Å hoppe over beregningen
Lever svar
03:31
Hva kan et tall representere?
En verdi eller størrelse
Lever svar
Et dyr
Lever svar
Et musikkstykke
Lever svar
03:37
Hva vil det si å løse en ligning for x?
Å finne x-verdien(e) som oppfyller ligningen
Lever svar
Å gjette et tall
Lever svar
Å ignorere x
Lever svar
03:39
Hva er f i f(x)?
Navnet på en funksjon
Lever svar
Et tilfeldig symbol uten betydning
Lever svar
En konstant
Lever svar
03:44
Hva betyr "= 0"?
At uttrykket er lik null
Lever svar
At uttrykket ikke finnes
Lever svar
At man må gjette svaret
Lever svar
03:49
Hva refererer "det" til i en matematisk sammenheng?
Det sist omtalte uttrykket
Lever svar
Ingenting
Lever svar
En konstant på 10
Lever svar
03:54
Hva er ln?
Den naturlige logaritmen
Lever svar
En lineær funksjon
Lever svar
Et tilfeldig symbol
Lever svar
03:56
Hvorfor se en funksjon grafisk?
For å forstå form og egenskaper visuelt
Lever svar
For å telle bokstaver i navnet
Lever svar
For å unngå alle beregninger
Lever svar
04:08
Hva forteller et vendepunkt oss?
At funksjonens krumning endres
Lever svar
Ingenting spesielt
Lever svar
At funksjonen slutter å eksistere
Lever svar
04:11
Hva er x i f(x)?
Variabelen vi setter inn i funksjonen
Lever svar
Funksjonens navn
Lever svar
En konstant verdi
Lever svar
04:26
Hvorfor dobbeltsjekke resultater?
For å sikre korrekthet
Lever svar
For å glemme resultatet
Lever svar
For å ignorere feilkilder
Lever svar
04:28
Hva betyr det å sette inn en verdi i en funksjon?
Å erstatte x med den valgte verdien
Lever svar
Å slette funksjonen
Lever svar
Å skrive en roman
Lever svar
04:35
Hva er å evaluere f(x)?
Å finne funksjonsverdien for en gitt x
Lever svar
Å lage en tegning
Lever svar
Å slette x fra minnet
Lever svar
04:40
Hvorfor er nøyaktighet viktig?
For å få riktige resultater
Lever svar
For å forvirre oppgaven
Lever svar
For å gjøre arbeidet meningsløst
Lever svar
04:42
Hva er en funksjonsverdi?
Resultatet av f(x) for en bestemt x
Lever svar
Funksjonens navn
Lever svar
Et vilkårlig tall fra historien
Lever svar
04:59
Hvorfor verifisere resultater?
For å unngå feilslutninger
Lever svar
For å lage kaos
Lever svar
For å oversette tekst
Lever svar
05:08
Hva betyr det å "vise et resultat"?
Å presentere det tydelig
Lever svar
Å skjule det
Lever svar
Å endre resultatet vilkårlig
Lever svar
05:20
Hva betyr "klippe ut"?
Å fjerne og lagre i utklippstavlen
Lever svar
Å kopiere rett ut i en bok
Lever svar
Å forsvinne helt
Lever svar
05:25
Hvor lagres det man klipper ut?
I utklippstavlen
Lever svar
I en hemmelig mappe
Lever svar
Det forsvinner umiddelbart
Lever svar
05:27
Hva betyr "lime inn"?
Å sette inn fra utklippstavlen
Lever svar
Å slette tekst
Lever svar
Å endre filformat
Lever svar
05:29
Hvorfor er kopier-og-lim nyttig?
Det sparer tid og arbeid
Lever svar
Det kompliserer prosessen
Lever svar
Det gjør teksten usynlig
Lever svar
05:35
Hva viser det når f(x) ved vendepunktet er halv bæreevne?
At vendepunktet sammenfaller med halvert bæreevne
Lever svar
At funksjonen er lineær
Lever svar
At bæreevnen ikke finnes
Lever svar
05:48
Hva viser den deriverte?
Vekstfarten
Lever svar
Summen av to tall
Lever svar
Funksjonens plassering på x-aksen
Lever svar
00:01
Hva kjennetegner en logistisk funksjon?
Den modellerer begrenset vekst
Lever svar
Den er alltid lineær
Lever svar
Den gir alltid negative verdier
Lever svar
00:35
Hva betyr det å fortsette på samme spor?
Bygge videre på tidligere innsikt
Lever svar
Starte helt på nytt
Lever svar
Endre tema fullstendig
Lever svar
00:43
Kan vi se en funksjon visuelt?
Ja, ved å tegne grafen
Lever svar
Nei, aldri
Lever svar
Bare hvis funksjonen er lineær
Lever svar
00:49
Hva finner vi ved å ta den deriverte av en funksjon?
Stigningsfarten
Lever svar
Produktet av alle verdier
Lever svar
Funksjonens farge
Lever svar
00:51
Kan den deriverte vises som en egen kurve?
Ja, den kan tegnes separat
Lever svar
Nei, det er umulig
Lever svar
Bare i tabellform
Lever svar
00:58
Hva viser maksverdien av den deriverte?
Hvor funksjonen vokser raskest
Lever svar
Hvor funksjonen er null
Lever svar
Hvor funksjonen synker raskest
Lever svar
01:07
Henger funksjonens vekstrate og dens deriverte sammen?
Ja, tett sammen
Lever svar
Nei, ikke i det hele tatt
Lever svar
Kun i sjeldne tilfeller
Lever svar
01:29
Hvordan kan man finne en maksverdi?
Ved å bruke en maks-kommando
Lever svar
Ved å dele funksjonen på null
Lever svar
Ved å ignorere derivatet
Lever svar
01:31
Må man noen ganger inspisere en funksjon nærmere?
Ja, for detaljer
Lever svar
Nei, aldri
Lever svar
Bare om den er lineær
Lever svar
01:36
Hvilken kommando brukes ofte for å finne maksimum?
Max
Lever svar
Min
Lever svar
Sum
Lever svar
01:39
Hva trenger man for å finne maksverdien på et intervall?
Funksjon og intervallgrenser
Lever svar
Bare en sluttverdi
Lever svar
Ingen verdier i det hele tatt
Lever svar
01:41
Kan vi analysere den deriverte direkte?
Ja, ved å bruke f'(x)
Lever svar
Nei, man må integrere først
Lever svar
Bare ved å gjette
Lever svar
01:46
Kan start- og sluttverdier velges fritt?
Ja, intervallet kan bestemmes
Lever svar
Nei, alltid fast
Lever svar
Kun startverdi kan velges
Lever svar
01:51
Kan man velge et stort intervall for maksøk?
Ja, for eksempel opp til tusen
Lever svar
Nei, maks ti
Lever svar
Nei, kun mindre enn en
Lever svar
01:58
Viser verktøyet et punkt ved maksverdien?
Ja, et punkt markeres
Lever svar
Nei, ingen markering
Lever svar
Bare en fargeløs linje
Lever svar
02:02
Kan vi visuelt bekrefte maksverdien?
Ja, ved å se på grafen
Lever svar
Nei, bare teoretisk
Lever svar
Nei, grafen viser det ikke
Lever svar
02:08
Kan maksverdien ligge over et bestemt punkt?
Ja, over et spesifikt sted på grafen
Lever svar
Nei, alltid under
Lever svar
Kun ved x=0
Lever svar
02:13
Har maksverdien en bestemt plassering?
Ja, på et spesifikt x-punkt
Lever svar
Nei, helt vilkårlig
Lever svar
Kun på y-aksen
Lever svar
02:15
Ligger maksverdien der den deriverte er størst?
Ja, der den deriverte er størst
Lever svar
Nei, der den er minst
Lever svar
Ved den deriverte lik null
Lever svar
02:18
Kan maksverdien av den deriverte være svært høy?
Ja, den kan være veldig stor
Lever svar
Nei, alltid under 100
Lever svar
Nei, alltid under 1
Lever svar
02:24
Kan maksverdien endres hvis parametere endres?
Ja, den endrer seg
Lever svar
Nei, den er konstant
Lever svar
Den forsvinner helt
Lever svar
02:37
Påvirker parameterjustering funksjonens form?
Ja, funksjonen endres
Lever svar
Nei, ingen påvirkning
Lever svar
Bare fargen endres
Lever svar
02:40
Kan maksverdien variere når en parameter justeres?
Ja, den kan bli større eller mindre
Lever svar
Nei, den er alltid lik
Lever svar
Den forsvinner fullstendig
Lever svar
02:45
Hva påvirker a-verdien i en logistisk funksjon?
Høyden på funksjonen
Lever svar
Fargen på grafen
Lever svar
Bredde på x-aksen
Lever svar
02:53
Må man like å eksperimentere med funksjoner?
Nei, men det kan være nyttig
Lever svar
Ja, ellers lærer man ingenting
Lever svar
Man må mislike det
Lever svar
03:11
Kan ekstreme parameterverdier gi uvanlige funksjonsverdier?
Ja, veldig store verdier
Lever svar
Nei, alltid moderate
Lever svar
Kun negative verdier
Lever svar
03:28

En populasjon blir beskrevet av en logistisk funksjon f(x)=a1+becxf(x) = \frac{a}{1+b \cdot e^{-c x} } . Bæreevnen til populasjonen, er da det samme som

a

Lever svar

b

Lever svar

c

Lever svar
×
Tilbakestill oppgaven som uløst
×
Tilbakestill oppgaven som uløst
×
Tilbakestill oppgaven som uløst

Grafen til den deriverte til en logistisk funksjon har toppunkt i x = 10. Dette forteller at

Den logistiske funksjonen har toppunkt i x = 10

Lever svar

Den logistiske funksjonen stiger raskest i x = 10

Lever svar

f(10) = 0

Lever svar
×
Tilbakestill oppgaven som uløst
×
Tilbakestill oppgaven som uløst
×
Tilbakestill oppgaven som uløst
Når får vi størst vekst?
Der den dobbeltderiverte er lik null.
Lever svar
Der den deriverte er lik 0.
Lever svar
I toppunktet.
Lever svar
×
Tilbakestill oppgaven som uløst
×
Tilbakestill oppgaven som uløst
×
Tilbakestill oppgaven som uløst

Frida ønsker å kjøpe en ny PC som koster 7 995 kroner.Butikken tilbyr henne å kjøpe PC-en på avbetaling. Hun må da betale 36 like store månedlige beløp. Det første skal hun betale om én måned. Den månedlige renten er 1,6 %. I tillegg må hun betale et engangsgebyr på 30 kroner.

  • a) Forklar at dersom terminbeløpet er x kroner, så vil

    x1,016+x1,0162++x1,01636=8025\frac{x}{1,016} + \frac{x}{1,016^{2}} +\ldots+ \frac{x}{1,016^{36}} = 8025

    Løs denne likningen

    Frida vurderer å låne pengene i banken i stedet. Der må hun betale 289 kroner hver måned i 36 måneder. Hun må betale første beløp én måned etter at hun har tatt opp lånet.

  • b) Hvilken månedlig rente (i prosent) får hun i banken?

    Venninnen Elise har spart 650 kroner hver måned til en slik PC. Sparekontoen har en fast månedlig rente. I dag, like etter den 12. innbetalingen, har hun 8 107 kroner på kontoen.

  • c) Bestem den månedlige renten (i prosent) Elise fikk i banken.

Se løsning og registrer oppgaven
×