×
VGS matematikk
1 - 2 - 3 klasse

Lær VGS matten fra A til Å
med de beste metodene

Enkelt å
holde fokus

Forstå det
vanskelige

Få god
oversikt

Øv på
riktig tema

Få hjelp når
du stopper opp

Anne-Lise Frivold Svendsen

Flott opplegg og undervisning😊

Karina Tellmann Marthinussen

Tusen takk!

Ruben Flatås

Gjorde unna R2 som privatist på et halvt år!! Mattevideo har gjort det mye lettere å fordøye et så tungt pensum på så kort tid. Tusen takk for hjelpa!!😊

Vilde Ågotnes

Bra undervisning!

Hamdi A Ahmed

Jeg er fornøyd med videone deres det har hjulpet meg til å bestå matten i både Vgs og Uni . Så takk😊

Halvard Balto

Meget bra!

Halil Ibrahim Keser

Tusen takk. Veldig flink lærer. Gode forklaringer.

Marte Forsberg

Helt topp :D

Jon Mills

Bra side.

Kirsti Beate Årsandøy

Kjempebra!😊

Mari Bertelsen

Bra side. Veldig gode forklaringer😊

Selma Voss

Tror dette kommer til å redde meg på noen prøver fremover. Takk! :D

Caja Magnussen

takk for hjelpen

Abdi Omar

Takk for læreren av denne siden. Det er utrolig en bra side, fikk meg mye. Tusen hjertelig takk

Olav Lunde Arneberg

Kan trygt anbefale Arne Hovland! Beste læreren jeg har hatt i løpet av drøyt 20 år med utdanning.

Daniel Gabrielsen

takk for denne siden :D min 1T mattelærer snakker så monotont og gjør matte så kjedelig at interessen svinner vekk og jeg sovner etter 5 minutter.

Kassi 17 år - har eksamen i R1 til våren.
Min lærer går litt for raskt gjennom r1 pensum, noe som gjør at jeg trenger repetisjon av de vanskeligste emnene...les mer
Liam 34 år - har eksamen i R2 til jul.
Jeg kjøpte medlemskap fordi jeg ønsket forklaring via video og tilgang på "lærer" hele døgnet. Mattevideo er...les mer
Oda 16 år - har eksamen i 1T til våren.
Jeg ble abonnement hos mattevideo fordi jeg slet med å forstå pensum i 1T. Jeg ønsket å prøve, for å se...les mer
Nicolai 21 år - har eksamen i R2 til sommeren.
Jeg ble medlem for å forbedre meg, og gå dypere inn i spesifikke temaer. Jeg går i 10. klasse og tar forsert løp...les mer
Daniel 15 år - har eksamen i 1t til våren.
Jeg ble medlem for å forbedre meg, og gå dypere inn i spesifikke temaer. Jeg går i 10. klasse og tar forsert løp...les mer
June 20 år - preppet til eksamen.
Jeg brukte mattevideo da jeg måtte ta opp igjen eksamen, selvlært. Min gamle lærer gjorde det veldig vanskelig å henge med...les mer
Velg ditt fag
R1 er et studieretningsfag på Vg2-nivå. R1 står for "Realfaglig matematikk".
Hele læreplan fra A til Å
Videoundervsining alle temaer
Korte og effektive selvtester
Vi gjennomgår eksamen
Organiser temaene etter ønsket lærebok
Kapittelinndeling: Sinus R1
×
Organiser innholdet etter din lærebok
Organiser videoer med ønskede ikoner
Organiser selvtester med ønskede ikoner
Potenser og logaritmer
, curr: r1, book: 1624
12:37
05:30
31:02
19:21
21:19
09:42
06:41
18:13
06:43
23:52
30:59
07:08
04:22
02:47
Grenseverdier og derivasjon
, curr: r1, book: 1624
70:46
26:52
07:03
09:43
12:55
16:47
21:05
18:27
13:45
29:58
24:16
06:41
01:15
41:21
11:30
Funksjonsdrøfting
, curr: r1, book: 1624
42:19
26:10
57:03
05:46
05:07
04:44
04:41
06:37
05:27
29:33
11:23
11:58
02:05
Eksponential- og logaritmefunksjoner
, curr: r1, book: 1624
10:51
02:48
10:43
02:01
02:36
14:01
21:41
05:20
31:40
20:07
12:26
Vektorer
, curr: r1, book: 1624
06:24
09:29
03:15
12:41
14:29
05:06
16:12
29:59
06:47
07:52
07:03
21:31
03:53
04:51
Skalarprodukt og parameterframstilling
, curr: r1, book: 1624
17:13
19:05
15:34
31:57
05:16
10:50
27:25
14:51
27:22
04:10
Flere temaer
, curr: r1, book: 1624
76:13
57:41
Eksamenstid 5 timer Del 1 (Uten hjelpemidler) skal leveres etter 2 timer. Del 2 (Med hjelpemidler) skal leveres etter senest 5 timer.

Oppgave 1 (5 poeng)

  Deriver funksjonene

a) f(x)=2x35x+4f(x)=2x^3-5x+4

b) g(x)=x2exg(x)=x^2e^x

c) h(x)=x23h(x)=\sqrt{x^2-3}

   

Oppgave 2 (4 poeng)

  Skriv så enkelt som mulig

a) x23x29+1x+3+5x3{\frac{x^2-3}{x^2-9} + \frac{1}{x+3} + \frac{5}{x-3}}

b) 2ln(a3b2)    3ln(ba2)2 \cdot ln(a^{-3} \cdot b^{2}) \ \ - \ \ 3 \cdot ln(\frac{b}{a^2})

 

Oppgave 3 (4 poeng)

  Tre punkt A(1,6)A(-1,6), B(2,1)B(2,1) og C(4,4)C(4,4) er gitt.

a) Bestem AB\overrightarrow{AB} og AC\overrightarrow{AC}

  Et punkt DD er gitt slik at

b) Bestem koordinatene til DD

Oppgave 4 (6 poeng)

  Funksjonen P er gitt ved

P(x)=2x36x22x+6{P(x)=2x^3-6x^2-2x+6}

 
a) Begrunn at (1,0){(1,0)} er et vendepunkt på grafen til P{P}.
b) Faktoriser P(x){P(x)} i lineære faktorer.
c) Løs likningen

2e3x6e2x2ex+6=0{2e^{3x}-6e^{2x}-2e^x+6=0}

 

Oppgave 5 (6 poeng)

 

Hjørnene i en trekant er A(1,0){A(1,0)} , B(6,2){B(6,2)} og C(3,5){C(3,5)} . Midtpunktene på sidene i trekanten er D{D}, E{E} og F{F}. Se figuren.

a) Forklar at koordinatene til punktene D{D}, E{E} og F{F} er

D(92,72){D \big(\frac{9}{2},\frac{7}{2} \big)}, E(2,52){E \big(2, \frac{5}{2} \big)} og F(72,1){F \big(\frac{7}{2}, 1 \big)}

Skjæringspunktet mellom medianene i trekanten er T.

b) Forklar at vi kan skrive AT{\overrightarrow{AT}} på to måter:

AT=sAD    ,    s=R{\overrightarrow{AT} = s \cdot \overrightarrow{AD}} \ \ \ \ , \ \ \ \ s = \mathbb{R}

AT=AB+tBE    ,    t=R{\overrightarrow{AT} = \overrightarrow{AB} + t \cdot \overrightarrow{BE}} \ \ \ \ , \ \ \ \ t = \mathbb{R}

der s og t er reelle tall.

c) Bruk vektorlikningene i oppgave b) til å bestemme s og t. Bestem koordinatene til T.

Oppgave 6 (4 poeng)

  En fabrikk produserer lyspærer. Alle lyspærene blir kontrollert. I kontrollen blir 8,0 % av lyspærene forkastet. Nærmere undersøkelser viser at
  • 92,0 % av de forkastede lyspærene er defekte
  • 2,0 % av de godkjente lyspærene er defekte
a) Vis at sannsynligheten er 9,2 % for at en tilfeldig produsert lyspære er defekt.
b) Bruk Bayes' setning til å bestemme sannsynligheten for at en defekt lyspære blir forkastet i kontrollen.    

Oppgave 7 (7 poeng)

En rettvinklet ΔABC\Delta{ABC} der C=90o\angle{C} = 90^{o} er gitt. Den innskrevne sirkelen har sentrum i S{S} og radius r{r}. Sirkelen tangerer trekanten i punktene D{D}, E{E} og F{F}. Vi setter AC=b{AC = b}, BC=a{BC = a} og AB=c{ AB = c}. Du får oppgitt at BF=BE{BF = BE} og AD=AE{AD = AE}

a) Bruk figuren til å forklare at a=BF+r{a = BF +r} og b=AD+r{b = AD +r}

Av figuren ser vi dessuten at c=AE+BE{c = AE + BE}

b) Vis at a+bc=2r{a + b - c = 2r}

c) Forklare at vi kan skrive arealet T av trekanten på to måter:

T=12ab{T = \frac{1}{2} \cdot a \cdot b} og T=12r(a+b+c){T = \frac{1}{2} \cdot r \cdot (a+b+c)}

d) Bruk resultatene du fant i oppgavene b) og c) til å utlede Pytagoras' setning.

DEL 2 - Med hjelpemidler

Oppgave 1 (6 poeng)

  I en kortstokk er det 52 kort. Kortene er fordelt på de fire fargene hjerter, ruter, spar og kløver. Hver farge har 13 kort fordelt på verdiene 2 til 10, knekt, dame, konge og ess. Tenk deg at du skal trekke tilfeldig fem kort fra kortstokken.

a) Bestem sannsynligheten for at du kommer til å trekke nøyaktig tre kort med verdi 10.

b) Bestem sannsynligheten for at du kommer til å trekke nøyaktig tre kort med samme verdi.

c) Bestem sannsynligheten for at alle kortene du kommer til å trekke, har samme farge.

Figur 1: Ett mulig utfall i oppgave a) Figur 2: Ett mulig utfall i oppgave b) Figur 3: Ett mulig utfall i oppgave c)  

Oppgave 2 (6 poeng)

Posisjonsvektoren til en partikkel er gitt ved

r(t)=[t21,t3t]{\overrightarrow{r}(t)= \left[ t^2-1,t^3-t \right] }

a) Tegn grafen til r{\overrightarrow{r}} når t[32,32]t \in \left[ -\frac{3}{2}, \frac{3}{2} \right].
b) Bestem fertsvektoren v(t){\overrightarrow{v}}(t) og akselerasjonsvektoren a(t){\overrightarrow{a}(t)}.
c) Bruk CAS til å bestemme den minste banefarten til partikkelen.

Oppgave 3 (4 poeng)

En stige på 7,0 m er stilt opp langs en vegg. Stigen danner sammen med veggen og bakken en rettvinkler ΔABC{\Delta{ABC}}. Se figuren. Vi setterAC=x{ AC = x}. Den korteste avstanden fra C{C } til stigen er d{d} meter.

a) Vis at d=x49x27d = {\frac{x \sqrt{49-x^2}}{7} }

b) Bestem x{x} slik at d{d} blir lengst mulig.

Hvor lang er d for denne verdien av x ?

 

 

Oppgave 4 (8 poeng)

  Funksjonen f{f } er gitt ved

f(x)=2x36x2+5x{f(x)=2x^3 - 6x^2 + 5x}

a) Bruk graftegner til å tegne grafen til f{f}.

Grafen tilf{ f} har tre tangenter som går gjennom punktetA(4,3){ A(4, 3)} .

b) Forklar at x-koordinaten til tangeringspunktene må være løsning av likningen

f(x)3x4=f(x){{\frac{f(x)-3}{x-4}} = f'(x)}

c) Bruk CAS til å løse denne likningen. Bestem likningen til hver av tangentene.

La P(a,b){P(a, b)} være et punkt i planet.

d) Hva er det maksimale antallet tangenter grafen til f{f }kan ha som går gjennom P{P }?

Gratis Prøvesmak
Superteknikker
En til en veiledning
R1
 - Kapittelinndeling: Sinus R1 (oppdatert læreplan)
 - Potenser og logaritmer
 - Logaritmelikninger og naturlige logaritmer
×
02:47
Teori 1
lnx=blnx=br1-2021_01_02_teori8_19598_1532_1634
×
Skjul video ▼
Vis video ▲
Selvtester og oppgaver for mengdetrening
10 sekunders quiz
Eksamensoppgaver
×
Hvilken type ligning nevnes?
Eksponentiell
Lever svar
Logaritmisk
Lever svar
Lineær
Lever svar
00:00
Hva studeres i denne sekvensen?
Løsning av en ligning
Lever svar
Lesing av en tekst
Lever svar
Analyse av en tabell
Lever svar
00:06
Hva beskriver logaritmen?
Tallet man må opphøye i for å få et annet tall
Lever svar
Tallet man trekker fra et annet tall
Lever svar
Antall siffer i en desimal
Lever svar
00:10
Hva er gitt for X?
At logaritmen til X er B
Lever svar
At X må være negativ
Lever svar
At X må være et heltall
Lever svar
00:21
Hva innebærer denne logaritmelikningen?
Et tall må opphøyes til noe
Lever svar
Et tall må ganges med noe
Lever svar
Et tall må subtraheres
Lever svar
00:31
Hvilket sentralt tall brukes?
e
Lever svar
2
Lever svar
10
Lever svar
00:38
Hva tilsvarer B her?
Eksponenten
Lever svar
Koeffisienten
Lever svar
Divisor
Lever svar
00:50
Hva betyr ln x = -1?
X = e
Lever svar
X = e⁻¹
Lever svar
X = 0
Lever svar
01:03
Hva kan e⁻¹ også skrives som?
1/e
Lever svar
e + 1
Lever svar
e × 2
Lever svar
01:10
Omtrent hvor stor er e⁻¹?
Cirka en tredel
Lever svar
Cirka to
Lever svar
Cirka fem
Lever svar
01:33
Hvilken desimalverdi nevnes for e⁻¹?
Omtrent 0,3
Lever svar
Omtrent 3,0
Lever svar
Omtrent 1,0
Lever svar
01:37
Hva foreslås for mer nøyaktig verdi?
Håndberegning
Lever svar
Kalkulator
Lever svar
Målebånd
Lever svar
01:41
Hva gir et mer presist tall?
Beregning med verktøy
Lever svar
Ren gjetning
Lever svar
Omtrentlig avrunding
Lever svar
01:46
Hvilken eksponentiell form nevnes her?
e⁻¹
Lever svar
Lever svar
10¹
Lever svar
01:56
Hvilken verdi nevnes for e⁻¹?
0,37
Lever svar
3,7
Lever svar
37
Lever svar
02:00
Var denne tilnærmingen riktig?
Ja
Lever svar
Nei
Lever svar
Bare delvis
Lever svar
02:04
Hvilken ligning introduseres?
2 ln x = 3
Lever svar
ln x = -1
Lever svar
2 + 2 = 4
Lever svar
02:08
Hva gjøres for å forenkle 2 ln x = 3?
Dele på to
Lever svar
Gange med to
Lever svar
Trekke fra to
Lever svar
02:17
Hva blir ln x når det deles på to?
3/2
Lever svar
2/3
Lever svar
3/4
Lever svar
02:24
Hva blir X ifølge transkripsjonen?
e^(3/2)
Lever svar
Lever svar
e⁻³
Lever svar
02:34
Hvilket annet svar sies også å være helt ok?
e⁻¹
Lever svar
10²
Lever svar
Lever svar
02:37
Hvis lnx=7\ln {x} = 7 så er .. ?
x=ln7x = \ln {7}
Lever svar
x=ln7ln1x = \frac{\ln 7}{\ln 1}
Lever svar
x=e7x= e^7
Lever svar
×
Tilbakestill oppgaven som uløst
×
Tilbakestill oppgaven som uløst
×
Tilbakestill oppgaven som uløst