Gjorde unna R2 som privatist på et halvt år!! Mattevideo har gjort det mye lettere å fordøye et så tungt pensum på så kort tid. Tusen takk for hjelpa!!😊
Vilde Ågotnes
Bra undervisning!
Hamdi A Ahmed
Jeg er fornøyd med videone deres det har hjulpet meg til å bestå matten i både Vgs og Uni . Så takk😊
Min lærer går litt for raskt gjennom r1 pensum, noe som gjør at jeg trenger repetisjon av de vanskeligste emnene...les mer
Min lærer går litt for raskt gjennom r1 pensum, noe som gjør at jeg trenger repetisjon av de vanskeligste emnene.
Mattevideo har hjulpet meg med å Forstå, ved gode forklaringer og muligheten til å pause underveis i videoene. Jeg har også brukt mattevideo til å løse oppgaver. Før hadde jeg problemer med fremgangsmåten ved oppgaveløsning, men nå har jeg lært dette. Hos mattevideo gjennomgår jeg oppgaver fra hvert kapittel, deretter bruker jeg samme fremgangsmåte på oppgavene fra læreverket.
Hvis du er privatist, anbefaler jeg å bruke mattevideo kapittel for kapittel. Først ser du gjennomgangen av teorien, og deretter prøver du deg på oppgavene (løsningen ligger ute). Dersom du har en lærer i faget, er det kanskje ikke nødvendig å se absolutt alle videoene. Da kan du hoppe rett til de emnene du trenger å lære mer om, eller til oppgavene som han gjennomgår. Absolutt å anbefale. Jeg har lært masse, og fått hjelp før prøver.
Jeg kjøpte medlemskap fordi jeg ønsket forklaring via video og tilgang på "lærer" hele døgnet. Mattevideo er...les mer
Jeg kjøpte medlemskap fordi jeg ønsket forklaring via video og tilgang på "lærer" hele døgnet.
Mattevideo er genialt fordi man kan gå tilbake å se eksempler om og om igjen til man skjønner det. Man kan også bla tilbake til "enklere" relevant pensum hvis man trenger det. Jeg har brukt mattevideo i stedet for forelesninger på universitetet, rett og slett fordi jeg kan følge mitt eget tempo og gå igjennom pensum når jeg trenger det.
Jeg anbefaler å bruke mattevideo på følgende måte: Lag en oversikt over hva du trenger å lære for å bestå eksamen. Sett deretter opp oversikt en i en økende vanskelighetsgrad. Bruk eksempler i boka kombinert med eksempler i videoene. Når du har sett en video, så regn deg gjennom oppgavene du har tilgjengelig. Er du i tvil om du har skjønt det, så se videoen på nytt. Når man har kommet gjennom pensum, så kan man bruke videoene til repetisjon. Denne læreren er tilgjengelig hele døgnet, og blir aldri frustrert hvis du ikke skjønner noe de første gangene pensum gjennomgås:-)
Jeg ble abonnement hos mattevideo fordi jeg slet med å forstå pensum i 1T. Jeg ønsket å prøve, for å se...les mer
Jeg ble abonnement hos mattevideo fordi jeg slet med å forstå pensum i 1T. Jeg ønsket å prøve, for å se om dette kunne være en enklere måte å lære matematikk på.
Jeg har brukt mattevideo på flere måter. Jeg så gjennom temaer på mattevideo kvelden før læreren min gikk gjennom det på skolen. Da kunne jeg litt om temaet på forhånd, fikk mer ut av timen, og hang bedre med enn før. Ellers brukte jeg også mattevideo før og under prøver. Jeg så gjennom videoer 3-4 dager før prøven, noterte viktige forklaringer og oppgaver, og brukte notatene slik at jeg kunne gå tilbake på mattevideo og se videoer under selve prøven (når det var lov å ha med hjelpemidler så klart).
Jeg vil anbefale andre elever å bruke mattevideo på samme måte, da dette fungerte bra for meg. Mattevideo er en god side, med en flink og motivert lærer. Om du sliter med faget på skolen, kan mattevideo være til stor hjelp, du kan se videoer så mange ganger du vil, uten å henge etter! Anbefales til alle:)
Jeg ble medlem for å forbedre meg, og gå dypere inn i spesifikke temaer. Jeg går i 10. klasse og tar forsert løp...les mer
Jeg bruker mattevideo når jeg gjør lekser, for å repetere regnemetoder, eller gjennomgår vanskelige temaer jeg sliter litt med. R2 er et vanskelig fag, med det hjelper meg å repetere temaer og regnemetoder i mitt eget tempo, siden jeg kan se videoene flere ganger og sette læreren på pause når jeg vil.
Mattevideo er en tjeneste som er bra hvis du står litt fast i pensum. Du kan se videoene i alle mattefagene fra 1P til R2. Man kan gå igjennom pensum i sitt eget tempo, og se videoene så mange ganger man vil helt til man skjønner det. I tillegg er det ikke så dyrt, så det er verdt å prøve en måned.
Jeg ble medlem for å forbedre meg, og gå dypere inn i spesifikke temaer. Jeg går i 10. klasse og tar forsert løp...les mer
Jeg ble medlem for å forbedre meg, og gå dypere inn i spesifikke temaer. Jeg går i 10. klasse og tar forsert løp i mattematikk. To ganger i uka tar jeg turen til en videregående skole for ekstra undervisning, men jeg føler at timene der ikke holder, da mine krav til karakterer er på lik linje med de som faktisk går 1. vgs. Derfor måtte jeg ha et tilleggsverktøy, og dermed fant jeg mattevideo.
Jeg har brukt mattevideo hovedsaklig til to ting;
1. Introduksjon til nye temaer. Jeg har brukt mattevideo til å ta en titt på nye temaer før timen, slik at når læreren faktisk går gjennom temaene blir læringen mye enklere. Etter timen bruker jeg også mattevideo til å drille meg selv flere ganger på det vi gjennomgikk. På denne måten ligger jeg et skritt foran de andre.
2. Ta igjen tapt undervisning. Hvis du er borte fra timen på grunn av f. eks sykdom, kan du få den samme tavleundervisningen på mattevideo som de andre hadde i timen. Jeg spør bare klassekameratene mine om hva de gikk gjennom i timen, og finner det på mattevideo. Dette er definitivt det smarteste valget jeg har gjort når det gjelder matte, start med det nå istedenfor å sløve rundt når du heller kan forbedre deg i det morsomste faget på skolen!
Jeg brukte mattevideo da jeg måtte ta opp igjen eksamen, selvlært. Min gamle lærer gjorde det veldig vanskelig å henge med...les mer
Jeg brukte mattevideo da jeg måtte ta opp igjen eksamen, selvlært. Min gamle lærer gjorde det veldig vanskelig å henge med. Han var nok flink i matte, men hadde vanskeligheter med å undervise oss som måtte ha det inn med teskje.
Jeg brukte læreboka kombinert med mattevideo. Først fant jeg temaene jeg slet mest med i boken og prøvde å løse de enkleste oppgavene. Om jeg slet, lette jeg dem opp på mattevideo. Der så jeg videoer med eksempeloppgaver, gjerne den samme videoen om og om igjen. Da videoene var sett, prøvde jeg å løse liknende oppgaver fra boken. Jeg gikk aldri videre til vanskeligere oppgaver før det grunnleggende satt. Dette gjentok jeg noen ganger i uka, og det virket fantastisk for meg.
TIPS: du kommer ikke langt om du ikke har god greie på det grunnleggende, så gå aldri videre på vanskeligere oppgaver før du har full Forståelse for grunnkunnskapen. For meg, og for mange andre, går mattematikk fort i glemmeboken. Derfor gjenntok jeg denne prossessen et par ganger i uka, slik at det til slutt satt som et skudd.
Det beste var at jeg på eksamen faktisk forstod en del oppgaver som jeg ikke hadde løst før, fordi grunnleggende kunnskap var på plass og jeg kunne bruke logisk tankegang på nye temaer. Mange sier at matte er logisk, man må bare knekke koden. Jeg er langt i fra noen ekspert, men for første gang i mitt liv som elev følte jeg at jeg klarte dette litt på egenhånd, og det er takket være enkle, tydelige og strukturerte videoer på mattevideo.no. Jeg bestod til slutt matteeksamen med glans, uten en eneste lærer fysisk i nærheten. Lykke til alle i samme sko! Matte kan faktisk trenes.
Eksamenstid 5 timer
Del 1 (Uten hjelpemidler) skal leveres etter 2 timer.
Del 2 (Med hjelpemidler) skal leveres etter senest 5 timer.
Oppgave 1 (5 poeng)
Deriver funksjonene
a) f(x)=2x3−5x+4
b) g(x)=x2ex
c) h(x)=x2−3
Oppgave 2 (4 poeng)
Skriv så enkelt som mulig
a) x2−9x2−3+x+31+x−35
b) 2⋅ln(a−3⋅b2)−3⋅ln(a2b)
Oppgave 3 (4 poeng)
Tre punkt A(−1,6), B(2,1) og C(4,4) er gitt.
a) Bestem AB og AC
Et punkt D er gitt slik at
b) Bestem koordinatene til D
Oppgave 4 (6 poeng)
Funksjonen P er gitt ved
P(x)=2x3−6x2−2x+6
a) Begrunn at (1,0) er et vendepunkt på grafen til P.
b) Faktoriser P(x) i lineære faktorer.
c) Løs likningen
2e3x−6e2x−2ex+6=0
Oppgave 5 (6 poeng)
Hjørnene i en trekant er A(1,0) , B(6,2) og C(3,5) .
Midtpunktene på sidene i trekanten er D, E og F. Se figuren.
a) Forklar at koordinatene til punktene D, E og F er
D(29,27), E(2,25) og F(27,1)
Skjæringspunktet mellom medianene i trekanten er T.
b) Forklar at vi kan skrive AT på to måter:
AT=s⋅AD,s=R
AT=AB+t⋅BE,t=R
der s og t er reelle tall.
c) Bruk vektorlikningene i oppgave b) til å bestemme s og t. Bestem koordinatene til T.
Oppgave 6 (4 poeng)
En fabrikk produserer lyspærer. Alle lyspærene blir kontrollert. I kontrollen blir 8,0 % av
lyspærene forkastet. Nærmere undersøkelser viser at
92,0 % av de forkastede lyspærene er defekte
2,0 % av de godkjente lyspærene er defekte
a) Vis at sannsynligheten er 9,2 % for at en tilfeldig produsert lyspære er defekt.
b) Bruk Bayes' setning til å bestemme sannsynligheten for at en defekt lyspære blir
forkastet i kontrollen.
Oppgave 7 (7 poeng)
En rettvinklet ΔABC der ∠C=90o er gitt. Den innskrevne sirkelen har sentrum i S og radius r. Sirkelen tangerer trekanten i punktene D, E og F. Vi setter AC=b, BC=a og AB=c. Du får oppgitt at BF=BE og AD=AE
a) Bruk figuren til å forklare at a=BF+r og b=AD+r
Av figuren ser vi dessuten at c=AE+BE
b) Vis at a+b−c=2r
c) Forklare at vi kan skrive arealet T av trekanten på to måter:
T=21⋅a⋅b og T=21⋅r⋅(a+b+c)
d) Bruk resultatene du fant i oppgavene b) og c) til å utlede Pytagoras' setning.
DEL 2 - Med hjelpemidler
Oppgave 1 (6 poeng)
I en kortstokk er det 52 kort. Kortene er fordelt på de fire fargene hjerter, ruter, spar og
kløver. Hver farge har 13 kort fordelt på verdiene 2 til 10, knekt, dame, konge og ess.
Tenk deg at du skal trekke tilfeldig fem kort fra kortstokken.
a) Bestem sannsynligheten for at du kommer til å trekke nøyaktig tre kort med verdi 10.
b) Bestem sannsynligheten for at du kommer til å trekke nøyaktig tre kort med samme verdi.
c) Bestem sannsynligheten for at alle kortene du kommer til å trekke, har samme farge.
Figur 1: Ett mulig utfall i oppgave a)
Figur 2: Ett mulig utfall i oppgave b)
Figur 3: Ett mulig utfall i oppgave c)
Oppgave 2 (6 poeng)
Posisjonsvektoren til en partikkel er gitt ved
r(t)=[t2−1,t3−t]
a) Tegn grafen til r når t∈[−23,23].
b) Bestem fertsvektoren v(t) og akselerasjonsvektoren a(t).
c) Bruk CAS til å bestemme den minste banefarten til partikkelen.
Oppgave 3 (4 poeng)
En stige på 7,0 m er stilt opp langs en vegg. Stigen danner sammen med veggen og bakken en rettvinkler ΔABC. Se figuren.
Vi setterAC=x. Den korteste avstanden fra C til stigen er d meter.
a) Vis at d=7x49−x2
b) Bestem x slik at d blir lengst mulig.
Hvor lang er d for denne verdien av x ?
Oppgave 4 (8 poeng)
Funksjonen f er gitt ved
f(x)=2x3−6x2+5x
a) Bruk graftegner til å tegne grafen til f.
Grafen tilf har tre tangenter som går gjennom punktetA(4,3) .
b) Forklar at x-koordinaten til tangeringspunktene må være løsning av likningen
x−4f(x)−3=f′(x)
c) Bruk CAS til å løse denne likningen. Bestem likningen til hver av tangentene.
La P(a,b) være et punkt i planet.
d) Hva er det maksimale antallet tangenter grafen til fkan ha som går gjennom P?
Det finnes mange ulike studieteknikker, utfordringen er ofte å finne de som fungerer best for deg. I oversikten under finner du enkelt de beste teknikkene.
Alle våre studietips er laget av vår superelev - med 6 i snitt fra vgs. Ingen av artiklene tar mer enn 5 minutter å lese - slik at du kan starte læringen så fort som mulig.
Hva skjer i hjernen når du lærer?
Du møter noe nytt for første gang
Du kobler den nye tingen med kunnskap du har fra før
Oppsummer det viktigste på 1-2-3, klikk her for 10 sekunders quiz
Oppsummer det viktigste på 1-2-3
00:06
Å se hva løsningen er og det står jo her.
+
Quiz section 1
Har løsningen allerede blitt vist?
↻
Nei
Lever svar
Bare delvis
Lever svar
Ja
Lever svar
00:11
Og så skal vi se noen situasjoner og gjøre noen opp[..], se på noen oppgaver. Her står det altså i x = a, og hvis da a er null, så blir svaret X er lik ln a. Det følger av definisjonen av ln, den naturlige logaritmen, fordi det var jo sånn at ln til et tall, det har vi sett i en annen video, ln til et tall a, det er det tallet vi må opphøye ti for at vi skal få tallet. [..] Da passer det jo fint med e opphøyd i ln a, det ja.
+
Quiz section 2
Hva representerer ln vanligvis?
↻
En polynomfunksjon
Lever svar
En naturlig logaritme
Lever svar
Et geometrisk mål
Lever svar
00:54
Den bør du kunne utnytte.
+
Quiz section 3
Kan definisjonen av ln være nyttig i forskjellige oppgaver?
↻
Ja
Lever svar
Nei
Lever svar
Kun i sjeldne tilfeller
Lever svar
00:58
Og da kan du løse mange ligninger, for eksempel den her.
+
Quiz section 4
Gir bruk av logaritmer mulighet til å løse flere typer ligninger?
↻
Nei, aldri
Lever svar
Bare for lineære likninger
Lever svar
Ja, helt klart
Lever svar
01:02
Da blir svaret på e x = en halv. Det blir X = ln en halv, og så har vi brukt et digitalt verktøy til å finne en tilnærmingsverdi. Det er minus null komma seks ni tre. La oss se litt hvordan det stemmer med definisjonen på ln, for her er nemlig grafen til e^x.
+
Quiz section 5
Hvis e^x = en positiv verdi, kan x finnes ved hjelp av ln?
↻
Ja
Lever svar
Nei
Lever svar
Bare om tallet er større enn 1
Lever svar
01:25
Og hvis vi nå sier at e^x skal være en halv, så er jo en halv der omtrent, og hvis vi går bort sånn, da ser vi at det tallet der skal være minus null komma seks ni tre, og det ser jo ålreit ut.
+
Quiz section 6
Blir x positiv eller negativ når e^x er en halv?
↻
Positiv
Lever svar
Negativ
Lever svar
Lik null
Lever svar
01:43
Her, hvis det er en halv.
+
Quiz section 7
Er en halv et eksempel på en positiv verdi?
↻
Ja
Lever svar
Nei
Lever svar
Bare i spesielle tilfeller
Lever svar
01:46
Så er det ln en halv.
+
Quiz section 8
Hva blir x hvis e^x = a?
↻
x = a^2
Lever svar
x = 1 / a
Lever svar
x = ln(a)
Lever svar
01:49
Og det blir minus null komma seks ni tre. Vi ser det her til venstre for null, så det er et negativt tall da.
+
Quiz section 9
Blir ln(1/2) et negativt tall?
↻
Den blir alltid større enn 1
Lever svar
Ja
Lever svar
Nei
Lever svar
01:56
Og det er ikke så langt til venstre som minus en. Så det ser bra ut så langt. Hvis vi nå ser på e^x = seks, hvis vi gjør det samme der, så skal altså e^x = seks, det skal være der omtrent da.
+
Quiz section 10
Kan vi bruke samme metode når e^x = 6?
↻
Ikke uten digitalt verktøy
Lever svar
Ja, vi tar ln(6)
Lever svar
Nei, vi må bruke kvadratrot
Lever svar
02:09
Og da går vi ned sånn, så kommer vi her omtrent. Der bor ln seks.
+
Quiz section 11
Blir ln(6) rundt 1.8?
↻
Ja
Lever svar
Nei
Lever svar
Den er alltid større enn 5
Lever svar
02:16
For det er jo svaret x = seks, men det blir da en komma syv ni to hvis vi har regnet på det, og igjen ser du at det stemmer ganske godt på tallinja.
+
Quiz section 12
Hva er den riktige verdien av x hvis e^x = 6?
↻
x = 0
Lever svar
x = ln(6)
Lever svar
x = 6
Lever svar
02:29
Og så kan vi spørre oss: Hva hvis du har e^x = minus fem?
+
Quiz section 13
Finnes det en reell løsning når e^x skal være negativ?
↻
Bare når x er lik null
Lever svar
Nei, ingen løsning
Lever svar
Ja, om x er stor nok
Lever svar
02:35
Legg merke til e^x. Det er jo alltid positivt, så du får aldri e^x til å bli [..]. Den grafen der går aldri ned til minus fem. [..] To er der, fire er det, minus fem er langt nedi her. Den grafen holder seg alltid over. Ingen løsning. Det er e^x alltid positiv.
+
Quiz section 14
Er e^x alltid positiv for alle reelle x?
↻
Ja
Lever svar
Bare for x over 1
Lever svar
Nei
Lever svar
02:54
Og så har vi en siste en. Hvis du møter en sånn likning, og det kan skje i R1: e opphøyd i to x minus to e^x minus tre = null. Da viser det seg at det er en kamuflert andregradsligning, for e^x opphøyd i det andre blir jo e^2x hvis vi bruker regneregelen for potenser. Vi er enige om at e^2x er det samme som (e^x)², x ganger to blir to x.
+
Quiz section 15
Kan et uttrykk som e^(2x) - 2 e^x - 3 = 0 behandles som en andregradslikning?
↻
Bare i spesielle tilfeller
Lever svar
Nei, aldri
Lever svar
Ja, ved å sette y = e^x
Lever svar
03:23
Da har du en [..], og den kan du løse på flere måter, men når du løser den [..], da vil jo
+
Quiz section 16
Kan abc-formelen brukes på slike «kamuflerte» andregradslikninger?
↻
Ja
Lever svar
Nei
Lever svar
Kun med grafisk verktøy
Lever svar
03:32
Når du løser denne nå, så løser du den med hensyn på x, fordi det som er argumentet. Da får du e^x = tre eller e^x = minus en. Jeg valgte å løse den bare med rå faktorisering av det andregradsuttrykket, men du kunne også brukt abc-formelen.
+
Quiz section 17
Hva blir x hvis e^x = 3?
↻
x = ln(3)
Lever svar
x = 3^e
Lever svar
x = -3
Lever svar
03:49
På det trinnet derfra og ned dit, og da blir løsningen e^x = tre eller e^x = minus [..]. E^x = tre får løsningen ln tre, men e^x kan fortsatt ikke være negativ, så den har ikke noe løsning.
+
Quiz section 18
Har e^x = -1 noen reell løsning?
↻
Nei
Lever svar
Ja, alltid
Lever svar
Ja, men bare i komplekse tall
Lever svar
04:05
Og så legg merke til den ligningen der. Det er altså en en kamuflert andre [..] den kan vi si.
+
Quiz section 19
Er e^(2x) det samme som (e^x)²?
↻
Bare for x = 1
Lever svar
Nei
Lever svar
Ja
Lever svar
04:11
Omgjør det til det som står der og løs det på en eller annen måte. Da finner du e^x til hva denne er. Jeg brukte faktorisering.
+
Quiz section 20
Kan slike e^x-likninger ofte løses med faktorisering?
↻
Bare hvis x er null
Lever svar
Nei
Lever svar
Ja
Lever svar
+
Quiz section 21
+
Quiz section 22
↻
Skjul video ▼
Vis video ▲
Selvtester og oppgaver for mengdetrening
10 sekunders quiz
Eksamensoppgaver
×
Hva skal denne videoen hovedsakelig handle om?
En spesiell type likning
Lever svar
Musikkteori
Lever svar
Historiske begivenheter
Lever svar
00:00
Har løsningen allerede blitt vist?
Ja
Lever svar
Nei
Lever svar
Bare delvis
Lever svar
00:06
Hva representerer ln vanligvis?
En naturlig logaritme
Lever svar
En polynomfunksjon
Lever svar
Et geometrisk mål
Lever svar
00:11
Kan definisjonen av ln være nyttig i forskjellige oppgaver?
Ja
Lever svar
Nei
Lever svar
Kun i sjeldne tilfeller
Lever svar
00:54
Gir bruk av logaritmer mulighet til å løse flere typer ligninger?
Ja, helt klart
Lever svar
Nei, aldri
Lever svar
Bare for lineære likninger
Lever svar
00:58
Hvis e^x = en positiv verdi, kan x finnes ved hjelp av ln?
Ja
Lever svar
Nei
Lever svar
Bare om tallet er større enn 1
Lever svar
01:02
Blir x positiv eller negativ når e^x er en halv?
Positiv
Lever svar
Negativ
Lever svar
Lik null
Lever svar
01:25
Er en halv et eksempel på en positiv verdi?
Ja
Lever svar
Nei
Lever svar
Bare i spesielle tilfeller
Lever svar
01:43
Hva blir x hvis e^x = a?
x = ln(a)
Lever svar
x = 1 / a
Lever svar
x = a^2
Lever svar
01:46
Blir ln(1/2) et negativt tall?
Ja
Lever svar
Nei
Lever svar
Den blir alltid større enn 1
Lever svar
01:49
Kan vi bruke samme metode når e^x = 6?
Ja, vi tar ln(6)
Lever svar
Nei, vi må bruke kvadratrot
Lever svar
Ikke uten digitalt verktøy
Lever svar
01:56
Blir ln(6) rundt 1.8?
Ja
Lever svar
Nei
Lever svar
Den er alltid større enn 5
Lever svar
02:09
Hva er den riktige verdien av x hvis e^x = 6?
x = 6
Lever svar
x = ln(6)
Lever svar
x = 0
Lever svar
02:16
Finnes det en reell løsning når e^x skal være negativ?
Nei, ingen løsning
Lever svar
Ja, om x er stor nok
Lever svar
Bare når x er lik null
Lever svar
02:29
Er e^x alltid positiv for alle reelle x?
Ja
Lever svar
Nei
Lever svar
Bare for x over 1
Lever svar
02:35
Kan et uttrykk som e^(2x) - 2 e^x - 3 = 0 behandles som en andregradslikning?
Ja, ved å sette y = e^x
Lever svar
Nei, aldri
Lever svar
Bare i spesielle tilfeller
Lever svar
02:54
Kan abc-formelen brukes på slike «kamuflerte» andregradslikninger?
Ja
Lever svar
Nei
Lever svar
Kun med grafisk verktøy
Lever svar
03:23
Hva blir x hvis e^x = 3?
x = ln(3)
Lever svar
x = 3^e
Lever svar
x = -3
Lever svar
03:32
Har e^x = -1 noen reell løsning?
Nei
Lever svar
Ja, alltid
Lever svar
Ja, men bare i komplekse tall
Lever svar
03:49
Er e^(2x) det samme som (e^x)²?
Ja
Lever svar
Nei
Lever svar
Bare for x = 1
Lever svar
04:05
Kan slike e^x-likninger ofte løses med faktorisering?
Ja
Lever svar
Nei
Lever svar
Bare hvis x er null
Lever svar
04:11
Hvis ex=10 , så er .. ?
x = 1
Lever svar
x = ln 10
Lever svar
x=e10
Lever svar
×
Takk for at du forsøkte, men dette er feil svaralternativ.
Tilbakestill oppgaven som uløst
×
Riktig svar!
Hvis man leser det som står: x er lik det man må opphøye e i for å få 10. Det passer bra med utgangspunktet: Noe som man opphøyer er i er lik 10.
Tilbakestill oppgaven som uløst
×
Takk for at du forsøkte, men dette er feil svaralternativ.
Flott opplegg og undervisning😊
Tusen takk!
Gjorde unna R2 som privatist på et halvt år!! Mattevideo har gjort det mye lettere å fordøye et så tungt pensum på så kort tid. Tusen takk for hjelpa!!😊
Bra undervisning!
Jeg er fornøyd med videone deres det har hjulpet meg til å bestå matten i både Vgs og Uni . Så takk😊
Meget bra!
Tusen takk. Veldig flink lærer. Gode forklaringer.
Helt topp :D
Bra side.
Kjempebra!😊
Bra side. Veldig gode forklaringer😊
Tror dette kommer til å redde meg på noen prøver fremover. Takk! :D
takk for hjelpen
Takk for læreren av denne siden. Det er utrolig en bra side, fikk meg mye. Tusen hjertelig takk
Kan trygt anbefale Arne Hovland! Beste læreren jeg har hatt i løpet av drøyt 20 år med utdanning.
takk for denne siden :D min 1T mattelærer snakker så monotont og gjør matte så kjedelig at interessen svinner vekk og jeg sovner etter 5 minutter.