Gjorde unna R2 som privatist på et halvt år!! Mattevideo har gjort det mye lettere å fordøye et så tungt pensum på så kort tid. Tusen takk for hjelpa!!😊
Vilde Ågotnes
Bra undervisning!
Hamdi A Ahmed
Jeg er fornøyd med videone deres det har hjulpet meg til å bestå matten i både Vgs og Uni . Så takk😊
Min lærer går litt for raskt gjennom r1 pensum, noe som gjør at jeg trenger repetisjon av de vanskeligste emnene...les mer
Min lærer går litt for raskt gjennom r1 pensum, noe som gjør at jeg trenger repetisjon av de vanskeligste emnene.
Mattevideo har hjulpet meg med å Forstå, ved gode forklaringer og muligheten til å pause underveis i videoene. Jeg har også brukt mattevideo til å løse oppgaver. Før hadde jeg problemer med fremgangsmåten ved oppgaveløsning, men nå har jeg lært dette. Hos mattevideo gjennomgår jeg oppgaver fra hvert kapittel, deretter bruker jeg samme fremgangsmåte på oppgavene fra læreverket.
Hvis du er privatist, anbefaler jeg å bruke mattevideo kapittel for kapittel. Først ser du gjennomgangen av teorien, og deretter prøver du deg på oppgavene (løsningen ligger ute). Dersom du har en lærer i faget, er det kanskje ikke nødvendig å se absolutt alle videoene. Da kan du hoppe rett til de emnene du trenger å lære mer om, eller til oppgavene som han gjennomgår. Absolutt å anbefale. Jeg har lært masse, og fått hjelp før prøver.
Jeg kjøpte medlemskap fordi jeg ønsket forklaring via video og tilgang på "lærer" hele døgnet. Mattevideo er...les mer
Jeg kjøpte medlemskap fordi jeg ønsket forklaring via video og tilgang på "lærer" hele døgnet.
Mattevideo er genialt fordi man kan gå tilbake å se eksempler om og om igjen til man skjønner det. Man kan også bla tilbake til "enklere" relevant pensum hvis man trenger det. Jeg har brukt mattevideo i stedet for forelesninger på universitetet, rett og slett fordi jeg kan følge mitt eget tempo og gå igjennom pensum når jeg trenger det.
Jeg anbefaler å bruke mattevideo på følgende måte: Lag en oversikt over hva du trenger å lære for å bestå eksamen. Sett deretter opp oversikt en i en økende vanskelighetsgrad. Bruk eksempler i boka kombinert med eksempler i videoene. Når du har sett en video, så regn deg gjennom oppgavene du har tilgjengelig. Er du i tvil om du har skjønt det, så se videoen på nytt. Når man har kommet gjennom pensum, så kan man bruke videoene til repetisjon. Denne læreren er tilgjengelig hele døgnet, og blir aldri frustrert hvis du ikke skjønner noe de første gangene pensum gjennomgås:-)
Jeg ble abonnement hos mattevideo fordi jeg slet med å forstå pensum i 1T. Jeg ønsket å prøve, for å se...les mer
Jeg ble abonnement hos mattevideo fordi jeg slet med å forstå pensum i 1T. Jeg ønsket å prøve, for å se om dette kunne være en enklere måte å lære matematikk på.
Jeg har brukt mattevideo på flere måter. Jeg så gjennom temaer på mattevideo kvelden før læreren min gikk gjennom det på skolen. Da kunne jeg litt om temaet på forhånd, fikk mer ut av timen, og hang bedre med enn før. Ellers brukte jeg også mattevideo før og under prøver. Jeg så gjennom videoer 3-4 dager før prøven, noterte viktige forklaringer og oppgaver, og brukte notatene slik at jeg kunne gå tilbake på mattevideo og se videoer under selve prøven (når det var lov å ha med hjelpemidler så klart).
Jeg vil anbefale andre elever å bruke mattevideo på samme måte, da dette fungerte bra for meg. Mattevideo er en god side, med en flink og motivert lærer. Om du sliter med faget på skolen, kan mattevideo være til stor hjelp, du kan se videoer så mange ganger du vil, uten å henge etter! Anbefales til alle:)
Jeg ble medlem for å forbedre meg, og gå dypere inn i spesifikke temaer. Jeg går i 10. klasse og tar forsert løp...les mer
Jeg bruker mattevideo når jeg gjør lekser, for å repetere regnemetoder, eller gjennomgår vanskelige temaer jeg sliter litt med. R2 er et vanskelig fag, med det hjelper meg å repetere temaer og regnemetoder i mitt eget tempo, siden jeg kan se videoene flere ganger og sette læreren på pause når jeg vil.
Mattevideo er en tjeneste som er bra hvis du står litt fast i pensum. Du kan se videoene i alle mattefagene fra 1P til R2. Man kan gå igjennom pensum i sitt eget tempo, og se videoene så mange ganger man vil helt til man skjønner det. I tillegg er det ikke så dyrt, så det er verdt å prøve en måned.
Jeg ble medlem for å forbedre meg, og gå dypere inn i spesifikke temaer. Jeg går i 10. klasse og tar forsert løp...les mer
Jeg ble medlem for å forbedre meg, og gå dypere inn i spesifikke temaer. Jeg går i 10. klasse og tar forsert løp i mattematikk. To ganger i uka tar jeg turen til en videregående skole for ekstra undervisning, men jeg føler at timene der ikke holder, da mine krav til karakterer er på lik linje med de som faktisk går 1. vgs. Derfor måtte jeg ha et tilleggsverktøy, og dermed fant jeg mattevideo.
Jeg har brukt mattevideo hovedsaklig til to ting;
1. Introduksjon til nye temaer. Jeg har brukt mattevideo til å ta en titt på nye temaer før timen, slik at når læreren faktisk går gjennom temaene blir læringen mye enklere. Etter timen bruker jeg også mattevideo til å drille meg selv flere ganger på det vi gjennomgikk. På denne måten ligger jeg et skritt foran de andre.
2. Ta igjen tapt undervisning. Hvis du er borte fra timen på grunn av f. eks sykdom, kan du få den samme tavleundervisningen på mattevideo som de andre hadde i timen. Jeg spør bare klassekameratene mine om hva de gikk gjennom i timen, og finner det på mattevideo. Dette er definitivt det smarteste valget jeg har gjort når det gjelder matte, start med det nå istedenfor å sløve rundt når du heller kan forbedre deg i det morsomste faget på skolen!
Jeg brukte mattevideo da jeg måtte ta opp igjen eksamen, selvlært. Min gamle lærer gjorde det veldig vanskelig å henge med...les mer
Jeg brukte mattevideo da jeg måtte ta opp igjen eksamen, selvlært. Min gamle lærer gjorde det veldig vanskelig å henge med. Han var nok flink i matte, men hadde vanskeligheter med å undervise oss som måtte ha det inn med teskje.
Jeg brukte læreboka kombinert med mattevideo. Først fant jeg temaene jeg slet mest med i boken og prøvde å løse de enkleste oppgavene. Om jeg slet, lette jeg dem opp på mattevideo. Der så jeg videoer med eksempeloppgaver, gjerne den samme videoen om og om igjen. Da videoene var sett, prøvde jeg å løse liknende oppgaver fra boken. Jeg gikk aldri videre til vanskeligere oppgaver før det grunnleggende satt. Dette gjentok jeg noen ganger i uka, og det virket fantastisk for meg.
TIPS: du kommer ikke langt om du ikke har god greie på det grunnleggende, så gå aldri videre på vanskeligere oppgaver før du har full Forståelse for grunnkunnskapen. For meg, og for mange andre, går mattematikk fort i glemmeboken. Derfor gjenntok jeg denne prossessen et par ganger i uka, slik at det til slutt satt som et skudd.
Det beste var at jeg på eksamen faktisk forstod en del oppgaver som jeg ikke hadde løst før, fordi grunnleggende kunnskap var på plass og jeg kunne bruke logisk tankegang på nye temaer. Mange sier at matte er logisk, man må bare knekke koden. Jeg er langt i fra noen ekspert, men for første gang i mitt liv som elev følte jeg at jeg klarte dette litt på egenhånd, og det er takket være enkle, tydelige og strukturerte videoer på mattevideo.no. Jeg bestod til slutt matteeksamen med glans, uten en eneste lærer fysisk i nærheten. Lykke til alle i samme sko! Matte kan faktisk trenes.
Eksamenstid 5 timer
Del 1 (Uten hjelpemidler) skal leveres etter 2 timer.
Del 2 (Med hjelpemidler) skal leveres etter senest 5 timer.
Oppgave 1 (5 poeng)
Deriver funksjonene
a) f(x)=2x3−5x+4
b) g(x)=x2ex
c) h(x)=x2−3
Oppgave 2 (4 poeng)
Skriv så enkelt som mulig
a) x2−9x2−3+x+31+x−35
b) 2⋅ln(a−3⋅b2)−3⋅ln(a2b)
Oppgave 3 (4 poeng)
Tre punkt A(−1,6), B(2,1) og C(4,4) er gitt.
a) Bestem AB og AC
Et punkt D er gitt slik at
b) Bestem koordinatene til D
Oppgave 4 (6 poeng)
Funksjonen P er gitt ved
P(x)=2x3−6x2−2x+6
a) Begrunn at (1,0) er et vendepunkt på grafen til P.
b) Faktoriser P(x) i lineære faktorer.
c) Løs likningen
2e3x−6e2x−2ex+6=0
Oppgave 5 (6 poeng)
Hjørnene i en trekant er A(1,0) , B(6,2) og C(3,5) .
Midtpunktene på sidene i trekanten er D, E og F. Se figuren.
a) Forklar at koordinatene til punktene D, E og F er
D(29,27), E(2,25) og F(27,1)
Skjæringspunktet mellom medianene i trekanten er T.
b) Forklar at vi kan skrive AT på to måter:
AT=s⋅AD,s=R
AT=AB+t⋅BE,t=R
der s og t er reelle tall.
c) Bruk vektorlikningene i oppgave b) til å bestemme s og t. Bestem koordinatene til T.
Oppgave 6 (4 poeng)
En fabrikk produserer lyspærer. Alle lyspærene blir kontrollert. I kontrollen blir 8,0 % av
lyspærene forkastet. Nærmere undersøkelser viser at
92,0 % av de forkastede lyspærene er defekte
2,0 % av de godkjente lyspærene er defekte
a) Vis at sannsynligheten er 9,2 % for at en tilfeldig produsert lyspære er defekt.
b) Bruk Bayes' setning til å bestemme sannsynligheten for at en defekt lyspære blir
forkastet i kontrollen.
Oppgave 7 (7 poeng)
En rettvinklet ΔABC der ∠C=90o er gitt. Den innskrevne sirkelen har sentrum i S og radius r. Sirkelen tangerer trekanten i punktene D, E og F. Vi setter AC=b, BC=a og AB=c. Du får oppgitt at BF=BE og AD=AE
a) Bruk figuren til å forklare at a=BF+r og b=AD+r
Av figuren ser vi dessuten at c=AE+BE
b) Vis at a+b−c=2r
c) Forklare at vi kan skrive arealet T av trekanten på to måter:
T=21⋅a⋅b og T=21⋅r⋅(a+b+c)
d) Bruk resultatene du fant i oppgavene b) og c) til å utlede Pytagoras' setning.
DEL 2 - Med hjelpemidler
Oppgave 1 (6 poeng)
I en kortstokk er det 52 kort. Kortene er fordelt på de fire fargene hjerter, ruter, spar og
kløver. Hver farge har 13 kort fordelt på verdiene 2 til 10, knekt, dame, konge og ess.
Tenk deg at du skal trekke tilfeldig fem kort fra kortstokken.
a) Bestem sannsynligheten for at du kommer til å trekke nøyaktig tre kort med verdi 10.
b) Bestem sannsynligheten for at du kommer til å trekke nøyaktig tre kort med samme verdi.
c) Bestem sannsynligheten for at alle kortene du kommer til å trekke, har samme farge.
Figur 1: Ett mulig utfall i oppgave a)
Figur 2: Ett mulig utfall i oppgave b)
Figur 3: Ett mulig utfall i oppgave c)
Oppgave 2 (6 poeng)
Posisjonsvektoren til en partikkel er gitt ved
r(t)=[t2−1,t3−t]
a) Tegn grafen til r når t∈[−23,23].
b) Bestem fertsvektoren v(t) og akselerasjonsvektoren a(t).
c) Bruk CAS til å bestemme den minste banefarten til partikkelen.
Oppgave 3 (4 poeng)
En stige på 7,0 m er stilt opp langs en vegg. Stigen danner sammen med veggen og bakken en rettvinkler ΔABC. Se figuren.
Vi setterAC=x. Den korteste avstanden fra C til stigen er d meter.
a) Vis at d=7x49−x2
b) Bestem x slik at d blir lengst mulig.
Hvor lang er d for denne verdien av x ?
Oppgave 4 (8 poeng)
Funksjonen f er gitt ved
f(x)=2x3−6x2+5x
a) Bruk graftegner til å tegne grafen til f.
Grafen tilf har tre tangenter som går gjennom punktetA(4,3) .
b) Forklar at x-koordinaten til tangeringspunktene må være løsning av likningen
x−4f(x)−3=f′(x)
c) Bruk CAS til å løse denne likningen. Bestem likningen til hver av tangentene.
La P(a,b) være et punkt i planet.
d) Hva er det maksimale antallet tangenter grafen til fkan ha som går gjennom P?
Det finnes mange ulike studieteknikker, utfordringen er ofte å finne de som fungerer best for deg. I oversikten under finner du enkelt de beste teknikkene.
Alle våre studietips er laget av vår superelev - med 6 i snitt fra vgs. Ingen av artiklene tar mer enn 5 minutter å lese - slik at du kan starte læringen så fort som mulig.
Hva skjer i hjernen når du lærer?
Du møter noe nytt for første gang
Du kobler den nye tingen med kunnskap du har fra før
Vi skal her se på en annen viktig modell for vekst. Vi har jo sett på eksponentielle funksjoner, eksponentiell vekst, men nå er vi over på logistisk vekst.
+
Quiz section 0
Hvilken veksttype introduseres?
↻
Logistisk
Lever svar
Lineær
Lever svar
Eksponentiell
Lever svar
Oppsummer det viktigste på 1-2-3, klikk her for 10 sekunders quiz
Oppsummer det viktigste på 1-2-3
00:12
Og logistisk vekst er karakterisert ved den svarte grafen her.
+
Quiz section 1
Hvilken farge er grafen?
↻
Gul
Lever svar
Svart
Lever svar
Rød
Lever svar
00:18
Det som i biologi gjerne kalles en s-kurve. Den vokser, men så kommer det til et punkt hvor den ikke vokser så fort lenger, og så begynner den å flate seg ut.
+
Quiz section 2
Hva kalles kurven i biologi?
↻
Rett linje
Lever svar
U-kurve
Lever svar
S-kurve
Lever svar
00:28
Det kan for eksempel gjelde hvis man har en populasjon i biologien. Ved et tidspunkt er det gode forhold for den populasjonen. La oss si det er en type dyr på en øy, eller kanskje noen bakterier som lever igjennom et eller annet miljø hvor det er masse mat. Da er det mer eller mindre eksponentiell vekst i starten. Det blir flere og flere individer, men så kommer man til et punkt hvor dette er optimalt på en måte.
+
Quiz section 3
Hva er et typisk eksempel på logistisk vekst?
↻
En populasjon
Lever svar
En bils hastighet
Lever svar
En vares pris
Lever svar
01:04
Og så begynner det å flate ut. Når det kommer flere, blir det etter hvert så mange at det ikke er så lett å vokse mer.
+
Quiz section 4
Hva skjer når veksten møter grenser?
↻
Den stopper umiddelbart
Lever svar
Den øker uendelig
Lever svar
Den flater ut
Lever svar
01:11
Og her oppe har man det som kanskje heter bæreevnen i biologi.
+
Quiz section 5
Hva kalles øvre grense i biologi?
↻
Startverdi
Lever svar
Nullpunkt
Lever svar
Bæreevne
Lever svar
01:17
Da begynner det å flate ut. Da er det slik at det blir født nye individer, men det dør også like mange. Mens her blir det født flere enn det dør. Det dør noen her også, det er ikke slik at det bare blir født individer, men når det jevner seg ut, kommer man til det punktet hvor det dør like mange som blir født. Da vil det være en stabilitet her, og slik kan det være en del populasjoner utvikler seg over tid.
+
Quiz section 6
Hva kjennetegner stabil balanse?
↻
Fødsel = død
Lever svar
Ingen fødes
Lever svar
Ingen dør
Lever svar
01:42
I biologien tenker man på en slik funksjon: C delt på en pluss a multiplisert med e opphøyd i minus k gange x.
+
Quiz section 7
Hvordan ser den logistiske funksjonen ut?
↻
a*x + b
Lever svar
C*e^{kx}
Lever svar
C/(1 + a*e^{-kx})
Lever svar
01:51
Hvor alle bokstavene a, b og c er positive konstanter. E er jo Euler-tallet, omtrent to komma sju [..].
+
Quiz section 8
Hva er E?
↻
Negativ verdi
Lever svar
Tilfeldig tall
Lever svar
Euler-tall
Lever svar
02:01
[..]
+
Quiz section 9
Er det ny info her?
↻
Nei
Lever svar
Ja, en formel
Lever svar
Ja, en definisjon
Lever svar
02:04
Vi kan se litt på når vi har dette uttrykket. Da kan vi merke oss at startverdien er det samme som f av null, hvis vi bare setter null inn i uttrykket. Lager vi brøkstreken litt lenger, ser vi at vi får en pluss a multiplisert med e opphøyd i minus k gange null, og det blir i nullte som er lik en. Da blir det bare en pluss a multiplisert med en, altså en pluss a. Så C delt på en pluss a er startverdien.
+
Quiz section 10
Hva er startverdien?
↻
C
Lever svar
C/(1+a)
Lever svar
a+C
Lever svar
02:36
Og samtidig kan vi se hva som skjer mot slutten, altså når tiden går og går.
+
Quiz section 11
Hva studeres for stor tid?
↻
Startpunktet
Lever svar
Grenseverdien
Lever svar
Ingen endring
Lever svar
02:45
At man får en [..].
+
Quiz section 12
Hva skjer med e^{-kx} når x er stor?
↻
Den vokser uendelig
Lever svar
Den nærmer seg 0
Lever svar
Den er konstant
Lever svar
02:47
For store x-verdier, da x i praksis ofte er tid her.
+
Quiz section 13
Hva representerer x vanligvis?
↻
Masse
Lever svar
Tid
Lever svar
Hastighet
Lever svar
02:53
Så kan vi se på uttrykket i minus k gange x. Hvis x er veldig stor, blir det tallet der nærmere og nærmere null som en grense, og det betyr at funksjonen vil da gå mot C delt på en pluss a multiplisert med null. For da vil den faktoren der nærme seg null. Bare prøv selv e opphøyd i minus ti tusen, for eksempel. Det er bortimot null.
+
Quiz section 14
Mot hvilken verdi nærmer funksjonen seg?
↻
C
Lever svar
0
Lever svar
1
Lever svar
03:16
Og da får vi C delt på en pluss null, og det er C.
+
Quiz section 15
Hvilken konstant er asymptoten?
↻
e
Lever svar
a
Lever svar
C
Lever svar
03:22
Så det betyr at den utflatningen, den asymptoten for å bruke det ordet, er en vannrett asymptote. Funksjonen nærmer seg den, men kommer aldri helt fram. Den vannrette asymptoten vil ha verdien C.
+
Quiz section 16
Hvilken type asymptote er det?
↻
Horisontal
Lever svar
Vertikal
Lever svar
Ingen
Lever svar
03:38
Dette var generelt. Vi skal se på konkrete eksempler i andre videoer.
Hva kalles funksjoner som beskriver prosentvis vekst over tid?
Lineære funksjoner
Lever svar
Eksponentialfunksjoner
Lever svar
Konstant funksjoner
Lever svar
00:00
Hvordan beregner man vekstfaktoren ved prosentvis økning?
Ved å trekke prosentandelen fra 100
Lever svar
Ved å dele prosentandelen på 100 og legge til 1
Lever svar
Ved å multiplisere prosentandelen med 100
Lever svar
00:49
Hva kan en funksjon b(x) representere i en vekstmodell?
Den opprinnelige mengden
Lever svar
Antallet etter x enheter tid
Lever svar
Vekstfaktoren
Lever svar
01:04
Hvordan beregner man totalveksten etter flere tidsenheter med konstant vekstfaktor?
Ved å legge til vekstfaktoren for hver tidsenhet
Lever svar
Ved å multiplisere vekstfaktoren med antall tidsenheter
Lever svar
Ved å opphøye vekstfaktoren i antall tidsenheter
Lever svar
01:16
Hva representerer eksponenten x i uttrykket for eksponentiell vekst?
Startverdien
Lever svar
Antall tidsenheter
Lever svar
Vekstfaktoren
Lever svar
01:37
Hva er den generelle formen for en eksponentiell funksjon?
f(x) = a + b x
Lever svar
f(x) = a ⋅ bx
Lever svar
f(x) = a x2 + b x + c
Lever svar
01:46
Hva er den generelle formen for en lineær funksjon?
f(x) = a ⋅ bx
Lever svar
f(x) = a x + b
Lever svar
f(x) = a x2 + b x + c
Lever svar
02:18
Hva representerer stigningstallet a i en lineær funksjon?
Startverdien
Lever svar
Hvor raskt funksjonen stiger eller synker
Lever svar
Vekstfaktoren
Lever svar
03:01
Hva kjennetegner veksten til en eksponentialfunksjon sammenlignet med en lineær funksjon?
Den øker jevnt
Lever svar
Den øker raskere og raskere
Lever svar
Den øker saktere over tid
Lever svar
03:28
Hva skjer med en eksponentialfunksjon når vekstfaktoren er mindre enn 1?
Den øker raskere
Lever svar
Den minker over tid
Lever svar
Den blir konstant
Lever svar
03:54
Hva er vekstfaktoren ved en nedgang på 10%?
1.1
Lever svar
0.9
Lever svar
-0.1
Lever svar
04:04
Hva skjer med en eksponentialfunksjon med vekstfaktor mindre enn 1 når vi går bakover i tid?
Verdien øker
Lever svar
Verdien minker
Lever svar
Verdien forblir konstant
Lever svar
04:44
Hva bestemmer om en eksponentialfunksjon øker eller minker?
Verdien av eksponenten x
Lever svar
Verdien av vekstfaktoren b
Lever svar
Startverdien a
Lever svar
04:49
Er eksponentiell regresjon en metode for å beskrive vekst?
Nei
Lever svar
Ja
Lever svar
Bare for lineære data
Lever svar
00:00
Kan en populasjon øke over tid i et gunstig miljø?
Aldri
Lever svar
Ja
Lever svar
Kun hvis den er konstant
Lever svar
00:08
Øker en raskt voksende bestand betydelig i løpet av få timer?
Nei, den holder seg stabil
Lever svar
Ja, den kan det
Lever svar
Bare hvis timene er over 24
Lever svar
00:18
Brukes funksjonsmodeller for å forutsi utvikling over tid?
Ja
Lever svar
Nei, aldri
Lever svar
Kun for statiske data
Lever svar
00:30
Er det nyttig å organisere data i en tabell før analyse?
Ja, det gir oversikt
Lever svar
Nei, det er bortkastet
Lever svar
Kun hvis data er lineære
Lever svar
00:34
Bør man justere visningen for å se alle punkter tydelig?
Nei, det er unødvendig
Lever svar
Ja, da får man oversikt
Lever svar
Det spiller ingen rolle
Lever svar
00:52
Kan man lage en liste med punkter av merkede data?
Ja
Lever svar
Nei
Lever svar
Bare med lineær regresjon
Lever svar
01:03
Finnes det ofte et regnearkverktøy i matematiske programmer?
Ja
Lever svar
Nei
Lever svar
Kun i tekstbehandlere
Lever svar
01:07
Er høyreklikk ofte en snarvei for flere valg?
Ja
Lever svar
Nei
Lever svar
Bare i nettlesere
Lever svar
01:10
Kan man panorere i et grafisk vindu for bedre oversikt?
Ja, absolutt
Lever svar
Nei, det forblir fast
Lever svar
Bare i tekstmodus
Lever svar
01:15
Er det lurt å vurdere justeringer i visningen underveis?
Nei, man bør aldri endre noe
Lever svar
Ja, man bør tilpasse etter behov
Lever svar
Kun før man starter
Lever svar
01:26
Hjelper små justeringer i koordinatsystemet for å se data tydelig?
Ja
Lever svar
Nei
Lever svar
Bare ved lineær funksjon
Lever svar
01:30
Er det ofte nok å se et par hovedpunkter for å vurdere trenden?
Ja, som en rask sjekk
Lever svar
Nei, man må se alt
Lever svar
Bare hvis data ikke endres
Lever svar
01:32
Bør man kontrollere at punktene stemmer med tabellen?
Ja, for å unngå feil
Lever svar
Nei, ikke nødvendig
Lever svar
Bare hvis grafen mangler
Lever svar
01:35
Kan eksponentialregresjon gi oss en funksjon for dataene?
Nei, den gir bare tabeller
Lever svar
Ja, den estimerer en funksjon
Lever svar
Den gir bare lineær kurve
Lever svar
01:45
Er det lurt å navngi dataene sine (f.eks. liste) i programmet?
Ja, for å holde orden
Lever svar
Nei, det er bortkastet
Lever svar
Bare ved lineær data
Lever svar
02:01
Bekrefter man ofte kommandoer med Enter?
Ja
Lever svar
Nei
Lever svar
Det varierer fra gang til gang
Lever svar
02:07
Er avrunding til flere desimaler nyttig ved detaljerte beregninger?
Nei, man bør aldri runde
Lever svar
Ja, det gir presisjon
Lever svar
Kun ved heltall
Lever svar
02:24
Kan man teste ulike regresjonskommandoer for å se flere løsninger?
Ja
Lever svar
Nei
Lever svar
Bare i tekstprogrammer
Lever svar
02:28
Gjentas ofte samme prosedyre når man tester nye kommandoer?
Ja
Lever svar
Nei
Lever svar
Bare hvis man glemmer den gamle
Lever svar
02:35
Viser programmet noen ganger samme tall, men i ulik formel?
Nei, det er umulig
Lever svar
Ja, det kan skje
Lever svar
Bare med lineær regresjon
Lever svar
02:43
Kan en eksponentialfunksjon ha en startverdi og en vekstrate?
Ja
Lever svar
Nei, kun startverdi
Lever svar
Den har kun lineær stigning
Lever svar
02:50
Er det smart å beskrive fremgangsmåten man har brukt?
Ja, for dokumentasjon
Lever svar
Nei, det tar for lang tid
Lever svar
Kun om noen spør
Lever svar
02:57
Kan samme datasett beskrives med ulike eksponentialformler?
Ja
Lever svar
Nei
Lever svar
Kun én mulig formel
Lever svar
03:26
Representerer e en matematisk konstant i eksponentialfunksjoner?
Ja, cirka 2,71828
Lever svar
Nei, det er bare et symbol
Lever svar
Bare i lineære modeller
Lever svar
03:36
Uttrykker k-verdien vekstraten i en eksponentialmodell?
Nei, den er tilfeldig
Lever svar
Ja, den viser vekst per tidsenhet
Lever svar
Kun relevant i lineære funksjoner
Lever svar
03:39
Kan to ulike formler representere samme eksponentialkurve?
Nei, det er umulig
Lever svar
Ja, de kan være ekvivalente
Lever svar
Kun hvis de er lineære
Lever svar
03:47
Hvilken veksttype introduseres?
Eksponentiell
Lever svar
Logistisk
Lever svar
Lineær
Lever svar
00:00
Hvilken farge er grafen?
Gul
Lever svar
Svart
Lever svar
Rød
Lever svar
00:12
Hva kalles kurven i biologi?
S-kurve
Lever svar
U-kurve
Lever svar
Rett linje
Lever svar
00:18
Hva er et typisk eksempel på logistisk vekst?
En populasjon
Lever svar
En bils hastighet
Lever svar
En vares pris
Lever svar
00:28
Hva skjer når veksten møter grenser?
Den flater ut
Lever svar
Den øker uendelig
Lever svar
Den stopper umiddelbart
Lever svar
01:04
Hva kalles øvre grense i biologi?
Bæreevne
Lever svar
Startverdi
Lever svar
Nullpunkt
Lever svar
01:11
Hva kjennetegner stabil balanse?
Fødsel = død
Lever svar
Ingen dør
Lever svar
Ingen fødes
Lever svar
01:17
Hvordan ser den logistiske funksjonen ut?
C/(1 + a*e^{-kx})
Lever svar
C*e^{kx}
Lever svar
a*x + b
Lever svar
01:42
Hva er E?
Euler-tall
Lever svar
Tilfeldig tall
Lever svar
Negativ verdi
Lever svar
01:51
Er det ny info her?
Nei
Lever svar
Ja, en formel
Lever svar
Ja, en definisjon
Lever svar
02:01
Hva er startverdien?
C/(1+a)
Lever svar
C
Lever svar
a+C
Lever svar
02:04
Hva studeres for stor tid?
Grenseverdien
Lever svar
Startpunktet
Lever svar
Ingen endring
Lever svar
02:36
Hva skjer med e^{-kx} når x er stor?
Den nærmer seg 0
Lever svar
Den vokser uendelig
Lever svar
Den er konstant
Lever svar
02:45
Hva representerer x vanligvis?
Tid
Lever svar
Masse
Lever svar
Hastighet
Lever svar
02:47
Mot hvilken verdi nærmer funksjonen seg?
C
Lever svar
0
Lever svar
1
Lever svar
02:53
Hvilken konstant er asymptoten?
C
Lever svar
a
Lever svar
e
Lever svar
03:16
Hvilken type asymptote er det?
Horisontal
Lever svar
Vertikal
Lever svar
Ingen
Lever svar
03:22
Hva vil vises i andre videoer?
Konkrete eksempler
Lever svar
Ingen nye tema
Lever svar
Kun teori
Lever svar
03:38
Hvordan ser uttrykket for en eksponentalfunksjon ut?
f(x)=a⋅bx hvor b er et positivt tall
Lever svar
f(x)=x⋅ab hvor a er et positivt tall
Lever svar
f(x)=alogx
Lever svar
×
Riktig svar!
Ja, fordi her er x en eksponent i funksjonen.
Tilbakestill oppgaven som uløst
×
Takk for at du forsøkte, men dette er feil svaralternativ.
Tilbakestill oppgaven som uløst
×
Takk for at du forsøkte, men dette er feil svaralternativ.
Tilbakestill oppgaven som uløst
Løs likningen
24x⋅2x2=32
x=−5,x=1
Lever svar
x=−10,x=2
Lever svar
x=345
Lever svar
×
Riktig svar!
24x×2x2=32 24x+x2=25
Fra dette ser vi at 4x+x2=5, eller at: x2+4x−5=0. Når vi løser dette:
x=2−4±16+20=2−4±6
Som gir oss: x=−5 eller x=1
Tilbakestill oppgaven som uløst
×
Takk for at du forsøkte, men dette er feil svaralternativ.
Tilbakestill oppgaven som uløst
×
Takk for at du forsøkte, men dette er feil svaralternativ.
Tilbakestill oppgaven som uløst
Løs likningen
        22−x⋅21+2x=32
x=1
Lever svar
x=2
Lever svar
x=3−4
Lever svar
×
Takk for at du forsøkte, men dette er feil svaralternativ.
Tilbakestill oppgaven som uløst
×
Riktig svar!
22−x⋅21+2x=3222−x+1+2x=253+x=5x=2
Tilbakestill oppgaven som uløst
×
Takk for at du forsøkte, men dette er feil svaralternativ.
Tilbakestill oppgaven som uløst
Vi har en logistisk funksjon f(x)=1+2e−5x30 . Hva blir f(0) ?
0
Lever svar
10
Lever svar
30
Lever svar
×
Takk for at du forsøkte, men dette er feil svaralternativ.
Tilbakestill oppgaven som uløst
×
Riktig svar!
f(x)=1+2e−5∗030 f(x)=1+230 f(x)=10
Tilbakestill oppgaven som uløst
×
Takk for at du forsøkte, men dette er feil svaralternativ.
Tilbakestill oppgaven som uløst
Hva er IKKE riktig når det gjelder funksjonene f(x)=1+2e−5x1 og f(x)=1+2e−50x1 ?
f(0)=g(0)
Lever svar
Begge går mot samme verdi x går mot uendelig
Lever svar
f(2)=g(2)
Lever svar
×
Takk for at du forsøkte, men dette er feil svaralternativ.
Tilbakestill oppgaven som uløst
×
Takk for at du forsøkte, men dette er feil svaralternativ.
Tilbakestill oppgaven som uløst
×
Riktig svar!
Her vil det bli forskjell mellom eksponentene i f(x) og g(x) siden g(x) har -50x og f(x) har -5x.
Tilbakestill oppgaven som uløst
Hvilken type funksjon gir RegEksp(2) oss?
f(x) = C∗ekx∗x
Lever svar
f(x) = C∗ekx
Lever svar
f(x) = C∗ax
Lever svar
×
Takk for at du forsøkte, men dette er feil svaralternativ.
Tilbakestill oppgaven som uløst
×
Riktig svar!
Tilbakestill oppgaven som uløst
×
Takk for at du forsøkte, men dette er feil svaralternativ.
Tilbakestill oppgaven som uløst
Silje driver butikk. I slutten av mars opprettet hun en side på Facebook.
I slutten av april fant Silje ut at antall personer som hadde klikket «liker» på siden
hennes x dager etter 31. mars,tilnærmet var gitt ved funksjonen
f(x)=80⋅1,045x
Her svarer x=0 til 31. mars, x=1 til 1.april, x=2 til 2 . april, og så videre.
Anta at denne funksjonen også vil gjelde for mai.
a) Hvor mange personer hadde klikket «liker» på Siljes side før 1. april? Hvor mange prosent øker antall «liker» med per dag ?
b) Vil antall «liker» passere 1000 innen utgangen av mai ?
c) Bestem f(16)ogf(ˊ16)
Hva forteller disse verdiene om antall «liker» på Siljes side?
Se løsning og registrer oppgaven
×
c)
f(16) forteller hvor mange "likes" det var 16. april, 162.
f\'(16) forteller om den momentane endringen denne dagen, en økning på ca 7 "likes".
Silje driver butikk. I slutten av mars opprettet hun en side på Facebook.
I slutten av april fant Silje ut at antall personer som hadde klikket «liker» på siden
hennes x dager etter 31. mars,tilnærmet var gitt ved funksjonen
f(x)=80⋅1,045x
Her svarer x=0til 31. mars, x=1til 1.april, x=2 til 2 . april, og så videre.
Anta at denne funksjonen også vil gjelde for mai
a) Hvor mange personer hadde klikket «liker» på Siljes side før 1. april? Hvor mange prosent øker antall «liker» med per dag ?
b) Vil antall «liker» passere 1000 innen utgangen av mai ?
c) Bestem f(16)ogf(ˊ16)
Hva forteller disse verdiene om antall «liker» på Siljes side?
Se løsning og registrer oppgaven
×
a)
80 personer, ettersom f(0)=80⋅1,0450=80⋅1=80.
1,045 tilsvarerer en vekst på 4,5%.
Svaret blir da 80 personer og 4,5% vekst.
Frida ønsker å kjøpe en ny PC som koster 7 995 kroner.Butikken tilbyr henne å kjøpe PC-en på avbetaling. Hun må da betale 36 like store månedlige beløp. Det første skal hun betale om én måned. Den månedlige renten er 1,6 %. I tillegg må hun betale et engangsgebyr på 30 kroner.
a) Forklar at dersom terminbeløpet er x kroner, så vil
1,016x+1,0162x+…+1,01636x=8025
Løs denne likningen
Frida vurderer å låne pengene i banken i stedet. Der må hun betale 289 kroner hver måned i 36 måneder. Hun må betale første beløp én måned etter at hun har tatt opp lånet.
b) Hvilken månedlig rente (i prosent) får hun i banken?
Venninnen Elise har spart 650 kroner hver måned til en slik PC. Sparekontoen har en fast månedlig rente. I dag, like etter den 12. innbetalingen, har hun 8 107 kroner på kontoen.
c) Bestem den månedlige renten (i prosent) Elise fikk i banken.
Se løsning og registrer oppgaven
×
Summen av alle innbetalinger ført fra til like etter den 12. innbetalingen danner en geometrisk
rekke med a=650, som er det siste sparebeløpet hun nettopp har satt inn, n = 12 som er antall
ledd i rekken (antall sparebeløp) og k=1+100p hvor p er den ukjente sparerenten.
Vi vet at summen av rekken er lik kontobeløpet som er kroner 8107.
Jeg kan da løse følgende likning i GeoGebra
Elises månedlige sparerenten har vært på 0,7 %
Frida ønsker å kjøpe en ny PC som koster 7 995 kroner.Butikken tilbyr henne å kjøpe PC-en på avbetaling. Hun må da betale 36 like store månedlige beløp. Det første skal hun betale om én måned. Den månedlige renten er 1,6 %. I tillegg må hun betale et engangsgebyr på 30 kroner.
a) Forklar at dersom terminbeløpet er x kroner, så vil
1,016x+1,0162x+…+1,01636x=8025
Løs denne likningen
Frida vurderer å låne pengene i banken i stedet. Der må hun betale 289 kroner hver måned i 36 måneder. Hun må betale første beløp én måned etter at hun har tatt opp lånet.
b) Hvilken månedlig rente (i prosent) får hun i banken?
Venninnen Elise har spart 650 kroner hver måned til en slik PC. Sparekontoen har en fast månedlig rente. I dag, like etter den 12. innbetalingen, har hun 8 107 kroner på kontoen.
c) Bestem den månedlige renten (i prosent) Elise fikk i banken.
Se løsning og registrer oppgaven
×
Situasjonen blir tilsvarende situasjonen i a). Men nå er månedsbeløpene Frida betaler kroner 289 og vekstfaktorene setter jeg nå som den ukjente x.Likningen blir nå som vist ved CAS i GeoGebra
Flott opplegg og undervisning😊
Tusen takk!
Gjorde unna R2 som privatist på et halvt år!! Mattevideo har gjort det mye lettere å fordøye et så tungt pensum på så kort tid. Tusen takk for hjelpa!!😊
Bra undervisning!
Jeg er fornøyd med videone deres det har hjulpet meg til å bestå matten i både Vgs og Uni . Så takk😊
Meget bra!
Tusen takk. Veldig flink lærer. Gode forklaringer.
Helt topp :D
Bra side.
Kjempebra!😊
Bra side. Veldig gode forklaringer😊
Tror dette kommer til å redde meg på noen prøver fremover. Takk! :D
takk for hjelpen
Takk for læreren av denne siden. Det er utrolig en bra side, fikk meg mye. Tusen hjertelig takk
Kan trygt anbefale Arne Hovland! Beste læreren jeg har hatt i løpet av drøyt 20 år med utdanning.
takk for denne siden :D min 1T mattelærer snakker så monotont og gjør matte så kjedelig at interessen svinner vekk og jeg sovner etter 5 minutter.