Gjorde unna R2 som privatist på et halvt år!! Mattevideo har gjort det mye lettere å fordøye et så tungt pensum på så kort tid. Tusen takk for hjelpa!!😊
Vilde Ågotnes
Bra undervisning!
Hamdi A Ahmed
Jeg er fornøyd med videone deres det har hjulpet meg til å bestå matten i både Vgs og Uni . Så takk😊
Min lærer går litt for raskt gjennom r1 pensum, noe som gjør at jeg trenger repetisjon av de vanskeligste emnene...les mer
Min lærer går litt for raskt gjennom r1 pensum, noe som gjør at jeg trenger repetisjon av de vanskeligste emnene.
Mattevideo har hjulpet meg med å Forstå, ved gode forklaringer og muligheten til å pause underveis i videoene. Jeg har også brukt mattevideo til å løse oppgaver. Før hadde jeg problemer med fremgangsmåten ved oppgaveløsning, men nå har jeg lært dette. Hos mattevideo gjennomgår jeg oppgaver fra hvert kapittel, deretter bruker jeg samme fremgangsmåte på oppgavene fra læreverket.
Hvis du er privatist, anbefaler jeg å bruke mattevideo kapittel for kapittel. Først ser du gjennomgangen av teorien, og deretter prøver du deg på oppgavene (løsningen ligger ute). Dersom du har en lærer i faget, er det kanskje ikke nødvendig å se absolutt alle videoene. Da kan du hoppe rett til de emnene du trenger å lære mer om, eller til oppgavene som han gjennomgår. Absolutt å anbefale. Jeg har lært masse, og fått hjelp før prøver.
Jeg kjøpte medlemskap fordi jeg ønsket forklaring via video og tilgang på "lærer" hele døgnet. Mattevideo er...les mer
Jeg kjøpte medlemskap fordi jeg ønsket forklaring via video og tilgang på "lærer" hele døgnet.
Mattevideo er genialt fordi man kan gå tilbake å se eksempler om og om igjen til man skjønner det. Man kan også bla tilbake til "enklere" relevant pensum hvis man trenger det. Jeg har brukt mattevideo i stedet for forelesninger på universitetet, rett og slett fordi jeg kan følge mitt eget tempo og gå igjennom pensum når jeg trenger det.
Jeg anbefaler å bruke mattevideo på følgende måte: Lag en oversikt over hva du trenger å lære for å bestå eksamen. Sett deretter opp oversikt en i en økende vanskelighetsgrad. Bruk eksempler i boka kombinert med eksempler i videoene. Når du har sett en video, så regn deg gjennom oppgavene du har tilgjengelig. Er du i tvil om du har skjønt det, så se videoen på nytt. Når man har kommet gjennom pensum, så kan man bruke videoene til repetisjon. Denne læreren er tilgjengelig hele døgnet, og blir aldri frustrert hvis du ikke skjønner noe de første gangene pensum gjennomgås:-)
Jeg ble abonnement hos mattevideo fordi jeg slet med å forstå pensum i 1T. Jeg ønsket å prøve, for å se...les mer
Jeg ble abonnement hos mattevideo fordi jeg slet med å forstå pensum i 1T. Jeg ønsket å prøve, for å se om dette kunne være en enklere måte å lære matematikk på.
Jeg har brukt mattevideo på flere måter. Jeg så gjennom temaer på mattevideo kvelden før læreren min gikk gjennom det på skolen. Da kunne jeg litt om temaet på forhånd, fikk mer ut av timen, og hang bedre med enn før. Ellers brukte jeg også mattevideo før og under prøver. Jeg så gjennom videoer 3-4 dager før prøven, noterte viktige forklaringer og oppgaver, og brukte notatene slik at jeg kunne gå tilbake på mattevideo og se videoer under selve prøven (når det var lov å ha med hjelpemidler så klart).
Jeg vil anbefale andre elever å bruke mattevideo på samme måte, da dette fungerte bra for meg. Mattevideo er en god side, med en flink og motivert lærer. Om du sliter med faget på skolen, kan mattevideo være til stor hjelp, du kan se videoer så mange ganger du vil, uten å henge etter! Anbefales til alle:)
Jeg ble medlem for å forbedre meg, og gå dypere inn i spesifikke temaer. Jeg går i 10. klasse og tar forsert løp...les mer
Jeg bruker mattevideo når jeg gjør lekser, for å repetere regnemetoder, eller gjennomgår vanskelige temaer jeg sliter litt med. R2 er et vanskelig fag, med det hjelper meg å repetere temaer og regnemetoder i mitt eget tempo, siden jeg kan se videoene flere ganger og sette læreren på pause når jeg vil.
Mattevideo er en tjeneste som er bra hvis du står litt fast i pensum. Du kan se videoene i alle mattefagene fra 1P til R2. Man kan gå igjennom pensum i sitt eget tempo, og se videoene så mange ganger man vil helt til man skjønner det. I tillegg er det ikke så dyrt, så det er verdt å prøve en måned.
Jeg ble medlem for å forbedre meg, og gå dypere inn i spesifikke temaer. Jeg går i 10. klasse og tar forsert løp...les mer
Jeg ble medlem for å forbedre meg, og gå dypere inn i spesifikke temaer. Jeg går i 10. klasse og tar forsert løp i mattematikk. To ganger i uka tar jeg turen til en videregående skole for ekstra undervisning, men jeg føler at timene der ikke holder, da mine krav til karakterer er på lik linje med de som faktisk går 1. vgs. Derfor måtte jeg ha et tilleggsverktøy, og dermed fant jeg mattevideo.
Jeg har brukt mattevideo hovedsaklig til to ting;
1. Introduksjon til nye temaer. Jeg har brukt mattevideo til å ta en titt på nye temaer før timen, slik at når læreren faktisk går gjennom temaene blir læringen mye enklere. Etter timen bruker jeg også mattevideo til å drille meg selv flere ganger på det vi gjennomgikk. På denne måten ligger jeg et skritt foran de andre.
2. Ta igjen tapt undervisning. Hvis du er borte fra timen på grunn av f. eks sykdom, kan du få den samme tavleundervisningen på mattevideo som de andre hadde i timen. Jeg spør bare klassekameratene mine om hva de gikk gjennom i timen, og finner det på mattevideo. Dette er definitivt det smarteste valget jeg har gjort når det gjelder matte, start med det nå istedenfor å sløve rundt når du heller kan forbedre deg i det morsomste faget på skolen!
Jeg brukte mattevideo da jeg måtte ta opp igjen eksamen, selvlært. Min gamle lærer gjorde det veldig vanskelig å henge med...les mer
Jeg brukte mattevideo da jeg måtte ta opp igjen eksamen, selvlært. Min gamle lærer gjorde det veldig vanskelig å henge med. Han var nok flink i matte, men hadde vanskeligheter med å undervise oss som måtte ha det inn med teskje.
Jeg brukte læreboka kombinert med mattevideo. Først fant jeg temaene jeg slet mest med i boken og prøvde å løse de enkleste oppgavene. Om jeg slet, lette jeg dem opp på mattevideo. Der så jeg videoer med eksempeloppgaver, gjerne den samme videoen om og om igjen. Da videoene var sett, prøvde jeg å løse liknende oppgaver fra boken. Jeg gikk aldri videre til vanskeligere oppgaver før det grunnleggende satt. Dette gjentok jeg noen ganger i uka, og det virket fantastisk for meg.
TIPS: du kommer ikke langt om du ikke har god greie på det grunnleggende, så gå aldri videre på vanskeligere oppgaver før du har full Forståelse for grunnkunnskapen. For meg, og for mange andre, går mattematikk fort i glemmeboken. Derfor gjenntok jeg denne prossessen et par ganger i uka, slik at det til slutt satt som et skudd.
Det beste var at jeg på eksamen faktisk forstod en del oppgaver som jeg ikke hadde løst før, fordi grunnleggende kunnskap var på plass og jeg kunne bruke logisk tankegang på nye temaer. Mange sier at matte er logisk, man må bare knekke koden. Jeg er langt i fra noen ekspert, men for første gang i mitt liv som elev følte jeg at jeg klarte dette litt på egenhånd, og det er takket være enkle, tydelige og strukturerte videoer på mattevideo.no. Jeg bestod til slutt matteeksamen med glans, uten en eneste lærer fysisk i nærheten. Lykke til alle i samme sko! Matte kan faktisk trenes.
Eksamenstid 5 timer
Del 1 (Uten hjelpemidler) skal leveres etter 2 timer.
Del 2 (Med hjelpemidler) skal leveres etter senest 5 timer.
Oppgave 1 (5 poeng)
Deriver funksjonene
a) f(x)=2x3−5x+4
b) g(x)=x2ex
c) h(x)=x2−3
Oppgave 2 (4 poeng)
Skriv så enkelt som mulig
a) x2−9x2−3+x+31+x−35
b) 2⋅ln(a−3⋅b2)−3⋅ln(a2b)
Oppgave 3 (4 poeng)
Tre punkt A(−1,6), B(2,1) og C(4,4) er gitt.
a) Bestem AB og AC
Et punkt D er gitt slik at
b) Bestem koordinatene til D
Oppgave 4 (6 poeng)
Funksjonen P er gitt ved
P(x)=2x3−6x2−2x+6
a) Begrunn at (1,0) er et vendepunkt på grafen til P.
b) Faktoriser P(x) i lineære faktorer.
c) Løs likningen
2e3x−6e2x−2ex+6=0
Oppgave 5 (6 poeng)
Hjørnene i en trekant er A(1,0) , B(6,2) og C(3,5) .
Midtpunktene på sidene i trekanten er D, E og F. Se figuren.
a) Forklar at koordinatene til punktene D, E og F er
D(29,27), E(2,25) og F(27,1)
Skjæringspunktet mellom medianene i trekanten er T.
b) Forklar at vi kan skrive AT på to måter:
AT=s⋅AD,s=R
AT=AB+t⋅BE,t=R
der s og t er reelle tall.
c) Bruk vektorlikningene i oppgave b) til å bestemme s og t. Bestem koordinatene til T.
Oppgave 6 (4 poeng)
En fabrikk produserer lyspærer. Alle lyspærene blir kontrollert. I kontrollen blir 8,0 % av
lyspærene forkastet. Nærmere undersøkelser viser at
92,0 % av de forkastede lyspærene er defekte
2,0 % av de godkjente lyspærene er defekte
a) Vis at sannsynligheten er 9,2 % for at en tilfeldig produsert lyspære er defekt.
b) Bruk Bayes' setning til å bestemme sannsynligheten for at en defekt lyspære blir
forkastet i kontrollen.
Oppgave 7 (7 poeng)
En rettvinklet ΔABC der ∠C=90o er gitt. Den innskrevne sirkelen har sentrum i S og radius r. Sirkelen tangerer trekanten i punktene D, E og F. Vi setter AC=b, BC=a og AB=c. Du får oppgitt at BF=BE og AD=AE
a) Bruk figuren til å forklare at a=BF+r og b=AD+r
Av figuren ser vi dessuten at c=AE+BE
b) Vis at a+b−c=2r
c) Forklare at vi kan skrive arealet T av trekanten på to måter:
T=21⋅a⋅b og T=21⋅r⋅(a+b+c)
d) Bruk resultatene du fant i oppgavene b) og c) til å utlede Pytagoras' setning.
DEL 2 - Med hjelpemidler
Oppgave 1 (6 poeng)
I en kortstokk er det 52 kort. Kortene er fordelt på de fire fargene hjerter, ruter, spar og
kløver. Hver farge har 13 kort fordelt på verdiene 2 til 10, knekt, dame, konge og ess.
Tenk deg at du skal trekke tilfeldig fem kort fra kortstokken.
a) Bestem sannsynligheten for at du kommer til å trekke nøyaktig tre kort med verdi 10.
b) Bestem sannsynligheten for at du kommer til å trekke nøyaktig tre kort med samme verdi.
c) Bestem sannsynligheten for at alle kortene du kommer til å trekke, har samme farge.
Figur 1: Ett mulig utfall i oppgave a)
Figur 2: Ett mulig utfall i oppgave b)
Figur 3: Ett mulig utfall i oppgave c)
Oppgave 2 (6 poeng)
Posisjonsvektoren til en partikkel er gitt ved
r(t)=[t2−1,t3−t]
a) Tegn grafen til r når t∈[−23,23].
b) Bestem fertsvektoren v(t) og akselerasjonsvektoren a(t).
c) Bruk CAS til å bestemme den minste banefarten til partikkelen.
Oppgave 3 (4 poeng)
En stige på 7,0 m er stilt opp langs en vegg. Stigen danner sammen med veggen og bakken en rettvinkler ΔABC. Se figuren.
Vi setterAC=x. Den korteste avstanden fra C til stigen er d meter.
a) Vis at d=7x49−x2
b) Bestem x slik at d blir lengst mulig.
Hvor lang er d for denne verdien av x ?
Oppgave 4 (8 poeng)
Funksjonen f er gitt ved
f(x)=2x3−6x2+5x
a) Bruk graftegner til å tegne grafen til f.
Grafen tilf har tre tangenter som går gjennom punktetA(4,3) .
b) Forklar at x-koordinaten til tangeringspunktene må være løsning av likningen
x−4f(x)−3=f′(x)
c) Bruk CAS til å løse denne likningen. Bestem likningen til hver av tangentene.
La P(a,b) være et punkt i planet.
d) Hva er det maksimale antallet tangenter grafen til fkan ha som går gjennom P?
Det finnes mange ulike studieteknikker, utfordringen er ofte å finne de som fungerer best for deg. I oversikten under finner du enkelt de beste teknikkene.
Alle våre studietips er laget av vår superelev - med 6 i snitt fra vgs. Ingen av artiklene tar mer enn 5 minutter å lese - slik at du kan starte læringen så fort som mulig.
Hva skjer i hjernen når du lærer?
Du møter noe nytt for første gang
Du kobler den nye tingen med kunnskap du har fra før
Derivasjon handler veldig mye om å bruke regler. Skal du derivere et brøkuttrykk, så har vi en regel for det også, og den står her. Hvis du har en teller som er en funksjon og en nevner som er en funksjon.
+
Quiz section 0
Må man følge en spesiell regel ved derivasjon av brøkuttrykk?
↻
Nei, man kan gjette
Lever svar
Ja, det finnes en egen regel
Lever svar
Bare hvis nevneren er konstant
Lever svar
Oppsummer det viktigste på 1-2-3, klikk her for 10 sekunders quiz
Oppsummer det viktigste på 1-2-3
00:13
Så må du bruke.
+
Quiz section 1
Kan man ignorere reglene ved derivasjon?
↻
Kun når uttrykket er enkelt
Lever svar
Nei, man må bruke dem
Lever svar
Ja, alltid
Lever svar
00:17
Din egen som står her. Det som ikke er riktig, det er jo hvis du hadde trodd at du bare kunne derivere.
+
Quiz section 2
Bør man bare derivere telleren og ignorere nevneren?
↻
Ja, det er nok
Lever svar
Bare i spesielle tilfeller
Lever svar
Nei, man må følge hele regelen
Lever svar
00:24
Til eller noe på nevneren og så ferdig med det, så enkelt er det ikke, dessverre. Du må følge reglene.
+
Quiz section 3
Er derivasjon av brøker alltid enkel?
↻
Bare hvis telleren er konstant
Lever svar
Nei, det krever regler
Lever svar
Ja, alltid
Lever svar
00:30
Da skal du først ta telleren og derivere den, og så bare gange med nevneren uten å derivere den. Så skal du gjøre det motsatte etterpå, men nå er det minus. Hvis du tenker på den der produktregelen som vi kanskje har hatt, som du kanskje har sett i et tidligere [..].
+
Quiz section 4
Hvilken struktur har regelen for derivasjon av en brøk?
↻
Den er kun summen av teller og nevner
Lever svar
Den inneholder et minus-tegn og nevneren i kvadrat
Lever svar
Den krever ingen spesielle elementer
Lever svar
00:48
En tidligere video eller kommet på en eller annen måte fra før. Så ser jo det litt likt ut. Det er bare at her står det minus og ikke pluss, og så er det en ting til: du deler på v i annen.
+
Quiz section 5
Hva skiller brøkregelen fra produktregelen?
↻
Den bruker ikke nevner
Lever svar
Ingen forskjell
Lever svar
Den har et minus i stedet for pluss
Lever svar
00:59
Nevneren opphøyd i annen.
+
Quiz section 6
Hva skjer med nevneren i regelen?
↻
Den fjernes helt
Lever svar
Den opphøyes i annen potens
Lever svar
Den står i første potens
Lever svar
01:04
Hvor kommer alle disse reglene fra? De kommer fra at noen mennesker har brukt definisjonen av den deriverte, og det var jo sånn at når delta x går mot null, og så har de kvernet ut noen regler. Det er jo egentlig ganske [..].
+
Quiz section 7
Hvor stammer derivasjonsreglene fra?
↻
Fra tilfeldige antakelser
Lever svar
Fra definisjonen av den deriverte
Lever svar
Fra en formelbok uten bevis
Lever svar
01:25
Ja, det er ikke sånn kjempelett å gjøre det for den her, men det er fullt mulig å bruke definisjonen av den deriverte og lage denne regelen. Det skal du få slippe, men det du må gjøre er å kunne bruke regelen. La oss sjekke her nå. I dette tilfellet har vi en teller som er x i annen minus tre x.
+
Quiz section 8
Er det nødvendig å kunne bruke regelen uten å bevise den?
↻
Ja, man må kunne bruke den
Lever svar
Nei, man må alltid bevise den
Lever svar
Kun hvis lærer krever det
Lever svar
01:46
Og det betyr at u-derivert er lik to x minus tre.
+
Quiz section 9
Hva kalles den deriverte av telleren?
↻
v-derivert
Lever svar
u-derivert
Lever svar
x-derivert
Lever svar
01:50
Nevneren er jo x, og v-derivert blir jo da en.
+
Quiz section 10
Hva kalles den deriverte av nevneren?
↻
z-derivert
Lever svar
u-derivert
Lever svar
v-derivert
Lever svar
01:57
Det er ikke sånn at du må skrive det der akkurat.
+
Quiz section 11
Må man alltid skrive ut alle steg eksplisitt?
↻
Nei, det er ikke nødvendig
Lever svar
Ja, alltid
Lever svar
Kun i spesielle tilfeller
Lever svar
02:01
Du kan godt bare kjøre rett på, men akkurat nå så tok vi liksom det lille skrittet der.
+
Quiz section 12
Kan man hoppe over noen mellomsteg?
↻
Nei, aldri
Lever svar
Bare hvis oppgaven sier det
Lever svar
Ja, det kan man
Lever svar
02:06
Og så blir det [..].
+
Quiz section 13
Må man fortsette etter å ha funnet u- og v-derivert?
↻
Bare hvis resultatet er feil
Lever svar
Nei, man er ferdig da
Lever svar
Ja, for å anvende regelen
Lever svar
02:11
Derivert, det var altså to x.
+
Quiz section 14
Er det deriverte et nytt uttrykk?
↻
Ja, et nytt uttrykk
Lever svar
Nei, det samme uttrykket
Lever svar
Bare om funksjonen er enkel
Lever svar
02:15
Så skal vi la være, og vi skal bare gange med nevneren.
+
Quiz section 15
Må man først gange den deriverte telleren med uderivert nevner?
↻
Nei, spiller ingen rolle
Lever svar
Ja, ifølge regelen
Lever svar
Bare hvis nevneren er konstant
Lever svar
02:20
Og så skal vi gjøre det motsatte.
+
Quiz section 16
Innebærer regelen også et motsatt ledd?
↻
Ja, først én del, så motsatt
Lever svar
Kun i sjeldne tilfeller
Lever svar
Nei, bare ett steg
Lever svar
02:23
Vi skal beholde den sånn som den står.
+
Quiz section 17
Må en del av funksjonen forbli uendret i et av stegene?
↻
Bare ved lineære funksjoner
Lever svar
Nei, begge deler må endres
Lever svar
Ja, det må den
Lever svar
02:27
Og så skal vi gange med nevneren derivert, og det blir jo en.
+
Quiz section 18
Skal man også gange med den deriverte av nevneren?
↻
Ja, ifølge regelen
Lever svar
Nei, aldri
Lever svar
Kun hvis telleren er konstant
Lever svar
02:33
Og så skal vi dele på nevneren opphøyd i annen.
+
Quiz section 19
Må resultatet deles på nevneren i annen?
↻
Bare hvis nevneren er en konstant
Lever svar
Ja, alltid
Lever svar
Nei, aldri
Lever svar
02:38
Og nå har vi egentlig gjort det vi skal når vi brukte [..]. Det vil si, det er feil å si, men nå har vi brukt regelen. Men som regel er det jo meningen at vi ønsker å rydde opp i ting også. Det skal vi nok klare her, tror jeg.
+
Quiz section 20
Er det vanlig å forenkle resultatet?
↻
Bare i kompliserte tilfeller
Lever svar
Nei, aldri
Lever svar
Ja, man forenkler vanligvis
Lever svar
02:55
Under så blir det x i annen. Der får du to x i annen minus [..].
+
Quiz section 21
Krever resultatet ofte algebraisk forenkling?
↻
Ja, ofte
Lever svar
Nei, aldri
Lever svar
Bare i spesielle tilfeller
Lever svar
03:04
X i annen minus tre x, da så.
+
Quiz section 22
Kan telleren være et polynom?
↻
Nei, aldri
Lever svar
Ja, det kan den være
Lever svar
Bare hvis nevneren er konstant
Lever svar
03:08
Og så kommer vi og rydder litt opp i det, for da kan vi løse opp parentesen, så får du to x i annen minus x i annen pluss tre i stedet.
+
Quiz section 23
Må man av og til løse opp parenteser?
↻
Bare i avanserte tilfeller
Lever svar
Nei, aldri
Lever svar
Ja, for å forenkle
Lever svar
03:20
For når du løser opp en parentes, så skifter du jo fort den inn i parentesen når det står minus foran.
+
Quiz section 24
Endres fortegn når man løser opp en parentes med minus foran?
↻
Bare hvis tallene er negative
Lever svar
Nei, fortegn er uendret
Lever svar
Ja, fortegn endres
Lever svar
03:26
Og der står det bare [..].
+
Quiz section 25
Blir uttrykket enklere etter opprydding?
↻
Ja, gjerne
Lever svar
Det forblir alltid likt
Lever svar
Nei, det blir mer komplisert
Lever svar
03:29
X i annen pluss tre delt på x i annen.
+
Quiz section 26
Kan sluttresultatet bli et enkelt rasjonalt uttrykk?
↻
Bare i spesielle tilfeller
Lever svar
Nei, aldri
Lever svar
Ja, det kan det
Lever svar
03:35
Fordi ja, sånn.
+
Quiz section 27
Er dette et typisk sluttresultat?
↻
Ja, ofte
Lever svar
Nei, aldri
Lever svar
Bare i teoretiske eksempler
Lever svar
03:38
Men hovedsaken var jo det som står her oppe.
+
Quiz section 28
Er hovedpoenget å bruke regelen riktig?
↻
Bare hvis nevneren ikke er 1
Lever svar
Nei, poenget er uviktig
Lever svar
Ja, det er det viktige
Lever svar
03:42
Bruk av bruk av regelen.
+
Quiz section 29
Hva er kjernen i arbeidet med derivasjon av brøker?
Er en rasjonalfunksjon en funksjon med x i nevner?
Ja
Lever svar
Nei
Lever svar
Vet ikke
Lever svar
00:00
Kan nevneren i en rasjonalfunksjon være null?
Nei, aldri
Lever svar
Ja, noen ganger
Lever svar
Ja, alltid
Lever svar
00:43
Har en rasjonalfunksjon alltid en definisjonsmengde med unntak?
Ja, vanligvis
Lever svar
Nei, aldri
Lever svar
Bare hvis telleren er null
Lever svar
00:54
Skyldes en forbudt verdi ofte null i nevner?
Ja
Lever svar
Nei
Lever svar
Bare for polynomfunksjoner
Lever svar
00:59
Kan grafen til en rasjonalfunksjon ha asymptoter?
Ja
Lever svar
Nei
Lever svar
Bare for lineære funksjoner
Lever svar
01:02
Er en asymptote en linje grafen nærmer seg?
Ja
Lever svar
Nei
Lever svar
Bare en punkt
Lever svar
01:56
Er y=2 en vannrett asymptote?
Ja
Lever svar
Nei
Lever svar
Ukjent
Lever svar
02:10
Kan x=1 være en loddrett asymptote?
Ja
Lever svar
Nei
Lever svar
Bare en skrå linje
Lever svar
02:21
Har rasjonalfunksjoner ofte asymptoter når x går mot uendelig?
Ja
Lever svar
Nei
Lever svar
Aldri
Lever svar
03:21
Hva skjer med en over x når x går mot uendelig?
Det går mot null
Lever svar
Det går mot uendelig
Lever svar
Det forblir konstant
Lever svar
00:00
Hva kalles symbolet '⇒' i matematikk?
Implikasjonspil
Lever svar
Likhetstegn
Lever svar
Større enn tegn
Lever svar
00:10
Hva skjer med en over x når x øker?
Den blir mindre
Lever svar
Den blir større
Lever svar
Den forblir konstant
Lever svar
01:00
Hva er en tidel som desimaltall?
0,1
Lever svar
0,01
Lever svar
1,0
Lever svar
01:27
Hva er ti opphøyd i sjette?
En million
Lever svar
Hundre tusen
Lever svar
Ti tusen
Lever svar
01:32
Hva er grenseverdien av en over x når x går mot uendelig?
Null
Lever svar
Uendelig
Lever svar
En
Lever svar
02:11
Hva skjer når vi deler på et stort tall?
Resultatet blir lite
Lever svar
Resultatet blir stort
Lever svar
Resultatet forblir det samme
Lever svar
02:25
Hva skjer med en over x når x går mot null?
Den går mot uendelig
Lever svar
Den går mot null
Lever svar
Den blir negativ
Lever svar
02:32
Hva er en delt på en halv?
To
Lever svar
En halv
Lever svar
En
Lever svar
02:57
Hva er en delt på en tidel?
Ti
Lever svar
En
Lever svar
En tidel
Lever svar
03:12
Hva er en delt på 0,001?
Tusen
Lever svar
Hundre
Lever svar
Ti
Lever svar
03:22
Hva er en delt på 0,0000001?
Ti millioner
Lever svar
En million
Lever svar
Hundre tusen
Lever svar
03:36
Hva er ti opphøyd i ti?
10,000,000,000
Lever svar
1,000,000,000
Lever svar
100,000,000
Lever svar
03:45
Hva kaller vi et tall som har begrensninger?
Endelig
Lever svar
Uendelig
Lever svar
Ubestemt
Lever svar
04:22
Hva skjer når det ikke finnes grenser for hvor stort et tall kan bli?
Det går mot uendelig
Lever svar
Det går mot null
Lever svar
Det blir negativt
Lever svar
04:28
Hva skjer med hundre over x når x går mot uendelig?
Den går mot null
Lever svar
Den går mot hundre
Lever svar
Den går mot uendelig
Lever svar
04:39
Går hundre over x mot null når x går mot uendelig?
Ja
Lever svar
Nei
Lever svar
Bare hvis x er lite
Lever svar
04:52
Påvirker størrelsen på telleren grenseverdien når nevneren går mot uendelig?
Nei, grenseverdien er fortsatt null
Lever svar
Ja, større teller gir større grenseverdi
Lever svar
Ja, større teller gir negativ grenseverdi
Lever svar
05:10
Hva skjer med hundre over x når x går mot null?
Den går mot uendelig
Lever svar
Den går mot null
Lever svar
Den forblir konstant
Lever svar
05:17
Må man følge en spesiell regel ved derivasjon av brøkuttrykk?
Nei, man kan gjette
Lever svar
Ja, det finnes en egen regel
Lever svar
Bare hvis nevneren er konstant
Lever svar
00:00
Kan man ignorere reglene ved derivasjon?
Ja, alltid
Lever svar
Nei, man må bruke dem
Lever svar
Kun når uttrykket er enkelt
Lever svar
00:13
Bør man bare derivere telleren og ignorere nevneren?
Nei, man må følge hele regelen
Lever svar
Ja, det er nok
Lever svar
Bare i spesielle tilfeller
Lever svar
00:17
Er derivasjon av brøker alltid enkel?
Ja, alltid
Lever svar
Nei, det krever regler
Lever svar
Bare hvis telleren er konstant
Lever svar
00:24
Hvilken struktur har regelen for derivasjon av en brøk?
Den inneholder et minus-tegn og nevneren i kvadrat
Lever svar
Den er kun summen av teller og nevner
Lever svar
Den krever ingen spesielle elementer
Lever svar
00:30
Hva skiller brøkregelen fra produktregelen?
Den har et minus i stedet for pluss
Lever svar
Ingen forskjell
Lever svar
Den bruker ikke nevner
Lever svar
00:48
Hva skjer med nevneren i regelen?
Den står i første potens
Lever svar
Den opphøyes i annen potens
Lever svar
Den fjernes helt
Lever svar
00:59
Hvor stammer derivasjonsreglene fra?
Fra tilfeldige antakelser
Lever svar
Fra definisjonen av den deriverte
Lever svar
Fra en formelbok uten bevis
Lever svar
01:04
Er det nødvendig å kunne bruke regelen uten å bevise den?
Ja, man må kunne bruke den
Lever svar
Nei, man må alltid bevise den
Lever svar
Kun hvis lærer krever det
Lever svar
01:25
Hva kalles den deriverte av telleren?
u-derivert
Lever svar
v-derivert
Lever svar
x-derivert
Lever svar
01:46
Hva kalles den deriverte av nevneren?
u-derivert
Lever svar
v-derivert
Lever svar
z-derivert
Lever svar
01:50
Må man alltid skrive ut alle steg eksplisitt?
Ja, alltid
Lever svar
Nei, det er ikke nødvendig
Lever svar
Kun i spesielle tilfeller
Lever svar
01:57
Kan man hoppe over noen mellomsteg?
Ja, det kan man
Lever svar
Nei, aldri
Lever svar
Bare hvis oppgaven sier det
Lever svar
02:01
Må man fortsette etter å ha funnet u- og v-derivert?
Ja, for å anvende regelen
Lever svar
Nei, man er ferdig da
Lever svar
Bare hvis resultatet er feil
Lever svar
02:06
Er det deriverte et nytt uttrykk?
Ja, et nytt uttrykk
Lever svar
Nei, det samme uttrykket
Lever svar
Bare om funksjonen er enkel
Lever svar
02:11
Må man først gange den deriverte telleren med uderivert nevner?
Ja, ifølge regelen
Lever svar
Nei, spiller ingen rolle
Lever svar
Bare hvis nevneren er konstant
Lever svar
02:15
Innebærer regelen også et motsatt ledd?
Ja, først én del, så motsatt
Lever svar
Nei, bare ett steg
Lever svar
Kun i sjeldne tilfeller
Lever svar
02:20
Må en del av funksjonen forbli uendret i et av stegene?
Ja, det må den
Lever svar
Nei, begge deler må endres
Lever svar
Bare ved lineære funksjoner
Lever svar
02:23
Skal man også gange med den deriverte av nevneren?
Ja, ifølge regelen
Lever svar
Nei, aldri
Lever svar
Kun hvis telleren er konstant
Lever svar
02:27
Må resultatet deles på nevneren i annen?
Ja, alltid
Lever svar
Nei, aldri
Lever svar
Bare hvis nevneren er en konstant
Lever svar
02:33
Er det vanlig å forenkle resultatet?
Ja, man forenkler vanligvis
Lever svar
Nei, aldri
Lever svar
Bare i kompliserte tilfeller
Lever svar
02:38
Krever resultatet ofte algebraisk forenkling?
Ja, ofte
Lever svar
Nei, aldri
Lever svar
Bare i spesielle tilfeller
Lever svar
02:55
Kan telleren være et polynom?
Ja, det kan den være
Lever svar
Nei, aldri
Lever svar
Bare hvis nevneren er konstant
Lever svar
03:04
Må man av og til løse opp parenteser?
Ja, for å forenkle
Lever svar
Nei, aldri
Lever svar
Bare i avanserte tilfeller
Lever svar
03:08
Endres fortegn når man løser opp en parentes med minus foran?
Ja, fortegn endres
Lever svar
Nei, fortegn er uendret
Lever svar
Bare hvis tallene er negative
Lever svar
03:20
Blir uttrykket enklere etter opprydding?
Ja, gjerne
Lever svar
Nei, det blir mer komplisert
Lever svar
Det forblir alltid likt
Lever svar
03:26
Kan sluttresultatet bli et enkelt rasjonalt uttrykk?
Ja, det kan det
Lever svar
Nei, aldri
Lever svar
Bare i spesielle tilfeller
Lever svar
03:29
Er dette et typisk sluttresultat?
Ja, ofte
Lever svar
Nei, aldri
Lever svar
Bare i teoretiske eksempler
Lever svar
03:35
Er hovedpoenget å bruke regelen riktig?
Ja, det er det viktige
Lever svar
Nei, poenget er uviktig
Lever svar
Bare hvis nevneren ikke er 1
Lever svar
03:38
Hva er kjernen i arbeidet med derivasjon av brøker?
Å bruke regelen korrekt
Lever svar
Å gjette svaret
Lever svar
Å ignorere nevneren
Lever svar
03:42
Hva er en rasjonal funksjon?
En funksjon som inneholder brøk
Lever svar
En funksjon med x i nevner.
Lever svar
En funksjon med rasjonale tall.
Lever svar
×
Takk for at du forsøkte, men dette er feil svaralternativ.
Tilbakestill oppgaven som uløst
×
Riktig svar!
Ja, det er slik det er definert.
Tilbakestill oppgaven som uløst
×
Takk for at du forsøkte, men dette er feil svaralternativ.
Tilbakestill oppgaven som uløst
En rasjonal funksjon har vertikal asymptote ..?
for den x-verdi som gir null i teller
Lever svar
for den x-verdi som gir null i nevner
Lever svar
der hvor x går mot uendelig
Lever svar
×
Takk for at du forsøkte, men dette er feil svaralternativ.
Tilbakestill oppgaven som uløst
×
Riktig svar!
Der hvor nevneren blir null vil det være en udefinert y-verdi. Funksjonen vil da gå nærmere og nærmere denne udefinerte y-verdien opp og ned parallelt med y-aksen, altså en vertikal asymptote.
Tilbakestill oppgaven som uløst
×
Takk for at du forsøkte, men dette er feil svaralternativ.
Tilbakestill oppgaven som uløst
En rasjonal funksjon har vannrett asymptote..?
dersom funksjonen nærmer seg en bestemt verdi når x går mot uendelig
Lever svar
dersom funksjonen går mot uendelig
Lever svar
i x = 0.
Lever svar
×
Riktig svar!
Når x går mot uendelig og grafen nærmer seg en verdi, vil grafen øke mindre og mindre mot den verdien ettersom x blir større og større. Man kan da tenke seg at grafen flater helt ut når x går mot uendelig, og danner da en vannrett asymptote.
Tilbakestill oppgaven som uløst
×
Takk for at du forsøkte, men dette er feil svaralternativ.
Tilbakestill oppgaven som uløst
×
Takk for at du forsøkte, men dette er feil svaralternativ.
Tilbakestill oppgaven som uløst
Den deriverte til x−1x2+1 = ?
12x
Lever svar
(x−1)22x(x−1)−(x2+1)
Lever svar
Funksjonen er ikke kontinuerlig i x = 1, den er derfor ikke deriverbar.
Lever svar
×
Takk for at du forsøkte, men dette er feil svaralternativ.
Flott opplegg og undervisning😊
Tusen takk!
Gjorde unna R2 som privatist på et halvt år!! Mattevideo har gjort det mye lettere å fordøye et så tungt pensum på så kort tid. Tusen takk for hjelpa!!😊
Bra undervisning!
Jeg er fornøyd med videone deres det har hjulpet meg til å bestå matten i både Vgs og Uni . Så takk😊
Meget bra!
Tusen takk. Veldig flink lærer. Gode forklaringer.
Helt topp :D
Bra side.
Kjempebra!😊
Bra side. Veldig gode forklaringer😊
Tror dette kommer til å redde meg på noen prøver fremover. Takk! :D
takk for hjelpen
Takk for læreren av denne siden. Det er utrolig en bra side, fikk meg mye. Tusen hjertelig takk
Kan trygt anbefale Arne Hovland! Beste læreren jeg har hatt i løpet av drøyt 20 år med utdanning.
takk for denne siden :D min 1T mattelærer snakker så monotont og gjør matte så kjedelig at interessen svinner vekk og jeg sovner etter 5 minutter.