×
VGS matematikk
1 - 2 - 3 klasse

Lær VGS matten fra A til Å
med de beste metodene

Enkelt å
holde fokus

Forstå det
vanskelige

Få god
oversikt

Øv på
riktig tema

Få hjelp når
du stopper opp

Anne-Lise Frivold Svendsen

Flott opplegg og undervisning😊

Karina Tellmann Marthinussen

Tusen takk!

Ruben Flatås

Gjorde unna R2 som privatist på et halvt år!! Mattevideo har gjort det mye lettere å fordøye et så tungt pensum på så kort tid. Tusen takk for hjelpa!!😊

Vilde Ågotnes

Bra undervisning!

Hamdi A Ahmed

Jeg er fornøyd med videone deres det har hjulpet meg til å bestå matten i både Vgs og Uni . Så takk😊

Halvard Balto

Meget bra!

Halil Ibrahim Keser

Tusen takk. Veldig flink lærer. Gode forklaringer.

Marte Forsberg

Helt topp :D

Jon Mills

Bra side.

Kirsti Beate Årsandøy

Kjempebra!😊

Mari Bertelsen

Bra side. Veldig gode forklaringer😊

Selma Voss

Tror dette kommer til å redde meg på noen prøver fremover. Takk! :D

Caja Magnussen

takk for hjelpen

Abdi Omar

Takk for læreren av denne siden. Det er utrolig en bra side, fikk meg mye. Tusen hjertelig takk

Olav Lunde Arneberg

Kan trygt anbefale Arne Hovland! Beste læreren jeg har hatt i løpet av drøyt 20 år med utdanning.

Daniel Gabrielsen

takk for denne siden :D min 1T mattelærer snakker så monotont og gjør matte så kjedelig at interessen svinner vekk og jeg sovner etter 5 minutter.

Kassi 17 år - har eksamen i R1 til våren.
Min lærer går litt for raskt gjennom r1 pensum, noe som gjør at jeg trenger repetisjon av de vanskeligste emnene...les mer
Liam 34 år - har eksamen i R2 til jul.
Jeg kjøpte medlemskap fordi jeg ønsket forklaring via video og tilgang på "lærer" hele døgnet. Mattevideo er...les mer
Oda 16 år - har eksamen i 1T til våren.
Jeg ble abonnement hos mattevideo fordi jeg slet med å forstå pensum i 1T. Jeg ønsket å prøve, for å se...les mer
Nicolai 21 år - har eksamen i R2 til sommeren.
Jeg ble medlem for å forbedre meg, og gå dypere inn i spesifikke temaer. Jeg går i 10. klasse og tar forsert løp...les mer
Daniel 15 år - har eksamen i 1t til våren.
Jeg ble medlem for å forbedre meg, og gå dypere inn i spesifikke temaer. Jeg går i 10. klasse og tar forsert løp...les mer
June 20 år - preppet til eksamen.
Jeg brukte mattevideo da jeg måtte ta opp igjen eksamen, selvlært. Min gamle lærer gjorde det veldig vanskelig å henge med...les mer
Velg ditt fag
R1 er et studieretningsfag på Vg2-nivå. R1 står for "Realfaglig matematikk".
Hele læreplan fra A til Å
Videoundervsining alle temaer
Korte og effektive selvtester
Vi gjennomgår eksamen
Organiser temaene etter ønsket lærebok
Kapittelinndeling: Sinus R1
×
Organiser innholdet etter din lærebok
Organiser videoer med ønskede ikoner
Organiser selvtester med ønskede ikoner
Potenser og logaritmer
, curr: r1, book: 1624
12:37
05:30
31:02
19:21
21:19
09:42
06:41
18:13
06:43
23:52
30:59
07:08
04:22
02:47
Grenseverdier og derivasjon
, curr: r1, book: 1624
70:46
26:52
07:03
09:43
12:55
16:47
21:05
18:27
13:45
29:58
24:16
06:41
01:15
41:21
11:30
Funksjonsdrøfting
, curr: r1, book: 1624
42:19
26:10
57:03
05:46
05:07
04:44
04:41
06:37
05:27
29:33
11:23
11:58
02:05
Eksponential- og logaritmefunksjoner
, curr: r1, book: 1624
10:51
02:48
10:43
02:01
02:36
14:01
21:41
05:20
31:40
20:07
12:26
Vektorer
, curr: r1, book: 1624
06:24
09:29
03:15
12:41
14:29
05:06
16:12
29:59
06:47
07:52
07:03
21:31
03:53
04:51
Skalarprodukt og parameterframstilling
, curr: r1, book: 1624
17:13
19:05
15:34
31:57
05:16
10:50
27:25
14:51
27:22
04:10
Flere temaer
, curr: r1, book: 1624
76:13
57:41
Eksamenstid 5 timer Del 1 (Uten hjelpemidler) skal leveres etter 2 timer. Del 2 (Med hjelpemidler) skal leveres etter senest 5 timer.

Oppgave 1 (5 poeng)

  Deriver funksjonene

a) f(x)=2x35x+4f(x)=2x^3-5x+4

b) g(x)=x2exg(x)=x^2e^x

c) h(x)=x23h(x)=\sqrt{x^2-3}

   

Oppgave 2 (4 poeng)

  Skriv så enkelt som mulig

a) x23x29+1x+3+5x3{\frac{x^2-3}{x^2-9} + \frac{1}{x+3} + \frac{5}{x-3}}

b) 2ln(a3b2)    3ln(ba2)2 \cdot ln(a^{-3} \cdot b^{2}) \ \ - \ \ 3 \cdot ln(\frac{b}{a^2})

 

Oppgave 3 (4 poeng)

  Tre punkt A(1,6)A(-1,6), B(2,1)B(2,1) og C(4,4)C(4,4) er gitt.

a) Bestem AB\overrightarrow{AB} og AC\overrightarrow{AC}

  Et punkt DD er gitt slik at

b) Bestem koordinatene til DD

Oppgave 4 (6 poeng)

  Funksjonen P er gitt ved

P(x)=2x36x22x+6{P(x)=2x^3-6x^2-2x+6}

 
a) Begrunn at (1,0){(1,0)} er et vendepunkt på grafen til P{P}.
b) Faktoriser P(x){P(x)} i lineære faktorer.
c) Løs likningen

2e3x6e2x2ex+6=0{2e^{3x}-6e^{2x}-2e^x+6=0}

 

Oppgave 5 (6 poeng)

 

Hjørnene i en trekant er A(1,0){A(1,0)} , B(6,2){B(6,2)} og C(3,5){C(3,5)} . Midtpunktene på sidene i trekanten er D{D}, E{E} og F{F}. Se figuren.

a) Forklar at koordinatene til punktene D{D}, E{E} og F{F} er

D(92,72){D \big(\frac{9}{2},\frac{7}{2} \big)}, E(2,52){E \big(2, \frac{5}{2} \big)} og F(72,1){F \big(\frac{7}{2}, 1 \big)}

Skjæringspunktet mellom medianene i trekanten er T.

b) Forklar at vi kan skrive AT{\overrightarrow{AT}} på to måter:

AT=sAD    ,    s=R{\overrightarrow{AT} = s \cdot \overrightarrow{AD}} \ \ \ \ , \ \ \ \ s = \mathbb{R}

AT=AB+tBE    ,    t=R{\overrightarrow{AT} = \overrightarrow{AB} + t \cdot \overrightarrow{BE}} \ \ \ \ , \ \ \ \ t = \mathbb{R}

der s og t er reelle tall.

c) Bruk vektorlikningene i oppgave b) til å bestemme s og t. Bestem koordinatene til T.

Oppgave 6 (4 poeng)

  En fabrikk produserer lyspærer. Alle lyspærene blir kontrollert. I kontrollen blir 8,0 % av lyspærene forkastet. Nærmere undersøkelser viser at
  • 92,0 % av de forkastede lyspærene er defekte
  • 2,0 % av de godkjente lyspærene er defekte
a) Vis at sannsynligheten er 9,2 % for at en tilfeldig produsert lyspære er defekt.
b) Bruk Bayes' setning til å bestemme sannsynligheten for at en defekt lyspære blir forkastet i kontrollen.    

Oppgave 7 (7 poeng)

En rettvinklet ΔABC\Delta{ABC} der C=90o\angle{C} = 90^{o} er gitt. Den innskrevne sirkelen har sentrum i S{S} og radius r{r}. Sirkelen tangerer trekanten i punktene D{D}, E{E} og F{F}. Vi setter AC=b{AC = b}, BC=a{BC = a} og AB=c{ AB = c}. Du får oppgitt at BF=BE{BF = BE} og AD=AE{AD = AE}

a) Bruk figuren til å forklare at a=BF+r{a = BF +r} og b=AD+r{b = AD +r}

Av figuren ser vi dessuten at c=AE+BE{c = AE + BE}

b) Vis at a+bc=2r{a + b - c = 2r}

c) Forklare at vi kan skrive arealet T av trekanten på to måter:

T=12ab{T = \frac{1}{2} \cdot a \cdot b} og T=12r(a+b+c){T = \frac{1}{2} \cdot r \cdot (a+b+c)}

d) Bruk resultatene du fant i oppgavene b) og c) til å utlede Pytagoras' setning.

DEL 2 - Med hjelpemidler

Oppgave 1 (6 poeng)

  I en kortstokk er det 52 kort. Kortene er fordelt på de fire fargene hjerter, ruter, spar og kløver. Hver farge har 13 kort fordelt på verdiene 2 til 10, knekt, dame, konge og ess. Tenk deg at du skal trekke tilfeldig fem kort fra kortstokken.

a) Bestem sannsynligheten for at du kommer til å trekke nøyaktig tre kort med verdi 10.

b) Bestem sannsynligheten for at du kommer til å trekke nøyaktig tre kort med samme verdi.

c) Bestem sannsynligheten for at alle kortene du kommer til å trekke, har samme farge.

Figur 1: Ett mulig utfall i oppgave a) Figur 2: Ett mulig utfall i oppgave b) Figur 3: Ett mulig utfall i oppgave c)  

Oppgave 2 (6 poeng)

Posisjonsvektoren til en partikkel er gitt ved

r(t)=[t21,t3t]{\overrightarrow{r}(t)= \left[ t^2-1,t^3-t \right] }

a) Tegn grafen til r{\overrightarrow{r}} når t[32,32]t \in \left[ -\frac{3}{2}, \frac{3}{2} \right].
b) Bestem fertsvektoren v(t){\overrightarrow{v}}(t) og akselerasjonsvektoren a(t){\overrightarrow{a}(t)}.
c) Bruk CAS til å bestemme den minste banefarten til partikkelen.

Oppgave 3 (4 poeng)

En stige på 7,0 m er stilt opp langs en vegg. Stigen danner sammen med veggen og bakken en rettvinkler ΔABC{\Delta{ABC}}. Se figuren. Vi setterAC=x{ AC = x}. Den korteste avstanden fra C{C } til stigen er d{d} meter.

a) Vis at d=x49x27d = {\frac{x \sqrt{49-x^2}}{7} }

b) Bestem x{x} slik at d{d} blir lengst mulig.

Hvor lang er d for denne verdien av x ?

 

 

Oppgave 4 (8 poeng)

  Funksjonen f{f } er gitt ved

f(x)=2x36x2+5x{f(x)=2x^3 - 6x^2 + 5x}

a) Bruk graftegner til å tegne grafen til f{f}.

Grafen tilf{ f} har tre tangenter som går gjennom punktetA(4,3){ A(4, 3)} .

b) Forklar at x-koordinaten til tangeringspunktene må være løsning av likningen

f(x)3x4=f(x){{\frac{f(x)-3}{x-4}} = f'(x)}

c) Bruk CAS til å løse denne likningen. Bestem likningen til hver av tangentene.

La P(a,b){P(a, b)} være et punkt i planet.

d) Hva er det maksimale antallet tangenter grafen til f{f }kan ha som går gjennom P{P }?

Gratis Prøvesmak
Superteknikker
En til en veiledning
R1
 - Kapittelinndeling: Sinus R1 (oppdatert læreplan)
 - Eksponential- og logaritmefunksjoner
 - Funksjonen f(x) = ln x
×
04:16
Teori 2
Funksjonen f(x)=lnxf(x) = \ln{x}.
×
03:08
Teori 1
Viktig derivasjonsregel  (lnx)=1x(ln x)' = { \frac{1}{x} } .  Her beviser vi regelen.
03:27
Teori 3
Å bytte grunntall i eksponentialfunksjoner.

r1_2656
01:50
Oppgave 1
Derivér funksjonen  f(x)=ln(3x)f(x) = \ln{(3x)}
00:58
Oppgave 2
Vi deriverer  f(x)=3(lnx)3f(x)=3(lnx)^3.
Skjul video ▼
Vis video ▲
Selvtester og oppgaver for mengdetrening
10 sekunders quiz
Eksamensoppgaver
×
Hva kalles funksjoner av typen a^x?
Polynomfunksjoner
Lever svar
Eksponentialfunksjoner
Lever svar
Logaritmefunksjoner
Lever svar
00:00
Hvilket grunntall brukes ofte i eksponentialfunksjoner?
10
Lever svar
2
Lever svar
e
Lever svar
00:09
Kan en funksjon med basen e skrives som e^(k·x)?
Ja
Lever svar
Nei
Lever svar
Kun for x > 0
Lever svar
00:17
Hvilken logaritme hører til basen e?
log10
Lever svar
log2
Lever svar
ln
Lever svar
00:28
Er a^x det samme som e^(ln(a)·x)?
Ja
Lever svar
Nei
Lever svar
Bare for a = 5
Lever svar
00:41
Kan en potens opphøyes på nytt i x?
Ja, vi kan gange eksponentene
Lever svar
Nei, aldri
Lever svar
Kun hvis a > 1
Lever svar
00:53
Gir potensreglene oss (a^b)^c = a^(b·c)?
Ja
Lever svar
Nei
Lever svar
Kun for negative tall
Lever svar
00:57
Kan (a^b)^x skrives som a^(b·x)?
Ja, det følger av potensregler
Lever svar
Nei
Lever svar
Bare med a = e
Lever svar
01:00
Er parenteser viktige i algebra?
Ja
Lever svar
Nei
Lever svar
Kun i kompliserte uttrykk
Lever svar
01:12
Kan ln(a) finnes med en kalkulator?
Ja
Lever svar
Nei
Lever svar
Bare hvis a = 5
Lever svar
01:17
Er ln(5) omtrent 1,6?
Ja
Lever svar
Nei
Lever svar
Bare ved negative tall
Lever svar
01:31
Kan ln(5) fungere som en konstant i eksponentialfunksjoner?
Ja
Lever svar
Nei
Lever svar
Bare i base 10
Lever svar
01:45
Kan e^(5x) skrives som (e^5)^x?
Ja
Lever svar
Nei
Lever svar
Kun hvis x=5
Lever svar
01:50
Ønsker man noe i formen a^x, kan e^(k·x) skrives som (e^k)^x?
Ja
Lever svar
Nei
Lever svar
Kun ved k > 1
Lever svar
01:59
Hvilken regel ligger til grunn for (e^k)^x = e^(k·x)?
Potensregel
Lever svar
Brøkregel
Lever svar
Logaritmeregel
Lever svar
02:03
Er e^5 en konstant?
Ja
Lever svar
Nei
Lever svar
Kun hvis e = 1
Lever svar
02:14
Kan e^5 regnes ut numerisk?
Ja
Lever svar
Nei
Lever svar
Bare ln(5)
Lever svar
02:22
Er e^5 større enn 100?
Ja
Lever svar
Nei
Lever svar
Akkurat 100
Lever svar
02:28
Er e^5 omtrent 148,4?
Ja
Lever svar
Nei
Lever svar
2,718
Lever svar
02:34
Kan e^(5x) tilnærmes av en konstant opphøyd i x?
Ja
Lever svar
Nei
Lever svar
Av og til
Lever svar
02:49
Endrer en fast faktor foran a^x selve basen?
Nei
Lever svar
Ja
Lever svar
Av og til
Lever svar
02:55
Hvis vi har k·a^x, forandres basen a?
Nei
Lever svar
Ja
Lever svar
Kun ved store k
Lever svar
03:19
Hva er den deriverte av ln(x)?
ln(x)
Lever svar
1/x
Lever svar
x
Lever svar
00:00
Er en derivasjonsregel en formel for å finne en deriverte?
Ja
Lever svar
Nei
Lever svar
Bare for logaritmer
Lever svar
00:11
Er et bevis en logisk forklaring av en regel?
Ja
Lever svar
Nei
Lever svar
Bare en antakelse
Lever svar
00:17
Fjerner et bevis tvil om en påstands gyldighet?
Ja
Lever svar
Nei
Lever svar
Bare noen ganger
Lever svar
00:29
Er x lik e^(ln(x))?
Ja
Lever svar
Nei
Lever svar
Bare for x>1
Lever svar
00:32
Er ln(x) den inverse funksjonen til e^x?
Ja
Lever svar
Nei
Lever svar
Usikkert
Lever svar
00:45
Er ln knyttet til den naturlige eksponentialfunksjonen?
Ja
Lever svar
Nei
Lever svar
Bare i spesielle tilfeller
Lever svar
00:54
Hva er den deriverte av x?
1
Lever svar
x
Lever svar
0
Lever svar
01:03
Hvis den deriverte av x er 1, gjelder det samme for e^(ln(x))?
Ja
Lever svar
Nei
Lever svar
Bare når x>0
Lever svar
01:16
Bruker vi kjerneregelen for å derivere e^(ln(x))?
Ja
Lever svar
Nei
Lever svar
Vet ikke
Lever svar
01:27
Må vi derivere innmaten (ln(x)) i kjerneregelen?
Ja
Lever svar
Nei
Lever svar
Bare noen ganger
Lever svar
01:51
Hvis to uttrykk er like, er deres deriverte også like?
Ja
Lever svar
Nei
Lever svar
Ikke nødvendigvis
Lever svar
02:05
Kan et bevis involvere å løse en ligning?
Ja
Lever svar
Nei
Lever svar
Aldri
Lever svar
02:09
Kan vi sette e^(ln(x)) lik x?
Ja
Lever svar
Nei
Lever svar
Bare i spesielle tilfeller
Lever svar
02:21
Kan vi finne en ukjent derivert ved å isolere den i en ligning?
Ja
Lever svar
Nei
Lever svar
Bare med spesielle metoder
Lever svar
02:29
Må vi ofte dele med en variabel for å isolere en derivert?
Ja
Lever svar
Nei
Lever svar
Aldri
Lever svar
02:32
Er målet å finne den deriverte av ln(x)?
Ja
Lever svar
Nei
Lever svar
Det vet vi ikke
Lever svar
02:47
Kan algebraisk manipulasjon hjelpe med å finne en ukjent derivert?
Ja
Lever svar
Nei
Lever svar
Bare av og til
Lever svar
02:50
Er beviset fullført når vi viser at den deriverte av ln(x) er 1/x?
Ja
Lever svar
Nei
Lever svar
Uklart
Lever svar
03:01
Hvilken funksjon omtales i videoen?
ln x
Lever svar
sin x
Lever svar
log10 x
Lever svar
00:00
Hva vil de undersøke ved funksjonen?
Hvordan den ser ut
Lever svar
Hvordan den deriveres
Lever svar
Hvordan den multipliseres
Lever svar
00:15
Hva kjennetegner ln P for P > 0?
Tallet man opphøyer e i for å få P
Lever svar
Tallet man opphøyer 10 i for å få P
Lever svar
Tallet man multipliserer e med for å få P
Lever svar
00:20
Hva er e opphøyd i 0?
1
Lever svar
0
Lever svar
e
Lever svar
00:58
Hva er y-verdien når x = 1 på e^x-grafen?
e
Lever svar
1
Lever svar
0
Lever svar
01:04
Hvor mye er e^2 omtrent?
7,4
Lever svar
2,7
Lever svar
1,0
Lever svar
01:13
Hva er ln(1)?
0
Lever svar
1
Lever svar
–1
Lever svar
01:20
Hva sier definisjonen av ln P?
Eksponenten som gir P når vi opphøyer e
Lever svar
Summen av e og P
Lever svar
Differansen mellom e og P
Lever svar
01:33
Hvilken eksponent på e gir 1?
0
Lever svar
1
Lever svar
2
Lever svar
01:40
Hva er svaret når vi spør "Hva er ln(1)?"
0
Lever svar
1
Lever svar
2
Lever svar
01:44
Hva må e opphøyes i for å bli e?
1
Lever svar
0
Lever svar
2
Lever svar
01:46
Hva er ln(e^2)?
1
Lever svar
2
Lever svar
–2
Lever svar
01:50
Hva blir ln(e^-1)?
–1
Lever svar
0
Lever svar
1
Lever svar
02:13
Hva lurer de på om ln(0)?
Om den eksisterer
Lever svar
Om den er 1
Lever svar
Om den er uendelig
Lever svar
02:29
Hvorfor finnes ikke ln(0)?
e^x kan aldri bli 0
Lever svar
0 er et negativt tall
Lever svar
0 er større enn e
Lever svar
02:35
Hvorfor krysser e^x-grafen aldri x-aksen?
Fordi e^x alltid er positiv
Lever svar
Fordi e^x er konstant
Lever svar
Fordi e = 2,7
Lever svar
02:46
Hvorfor er ln(x) kun definert for x > 0?
Fordi ln av negative tall ikke finnes
Lever svar
Fordi x < 0 er positive
Lever svar
Fordi ln(x) da blir null
Lever svar
02:52
Hva er e^2 omtrent?
7,4
Lever svar
2,0
Lever svar
1,0
Lever svar
03:29
Hva er ln(e^2)?
2
Lever svar
1
Lever svar
–1
Lever svar
03:33
Hvorfor kalles e^x og ln(x) omvendte funksjoner?
De opphever hverandre
Lever svar
De er helt like
Lever svar
De er symmetriske om y-aksen
Lever svar
03:57
5x5^x kan også skrives
5ex5 e^x
Lever svar

ekxe^{kx} , der k=ln5k = ln 5

Lever svar
ln5exln 5 \cdot e^x
Lever svar
×
Tilbakestill oppgaven som uløst
×
Tilbakestill oppgaven som uløst
×
Tilbakestill oppgaven som uløst
Hva er ln 0?
Den finnes ikke
Lever svar
0
Lever svar
-1
Lever svar
×
Tilbakestill oppgaven som uløst
×
Tilbakestill oppgaven som uløst
×
Tilbakestill oppgaven som uløst
Hva er den derivertetil ln (x) ?
1/x
Lever svar
eln(x)e^{ln(x)}
Lever svar
1
Lever svar
×
Tilbakestill oppgaven som uløst
×
Tilbakestill oppgaven som uløst
×
Tilbakestill oppgaven som uløst