×
VGS matematikk
1 - 2 - 3 klasse

Lær VGS matten fra A til Å
med de beste metodene

Enkelt å
holde fokus

Forstå det
vanskelige

Få god
oversikt

Øv på
riktig tema

Få hjelp når
du stopper opp

Anne-Lise Frivold Svendsen

Flott opplegg og undervisning😊

Karina Tellmann Marthinussen

Tusen takk!

Ruben Flatås

Gjorde unna R2 som privatist på et halvt år!! Mattevideo har gjort det mye lettere å fordøye et så tungt pensum på så kort tid. Tusen takk for hjelpa!!😊

Vilde Ågotnes

Bra undervisning!

Hamdi A Ahmed

Jeg er fornøyd med videone deres det har hjulpet meg til å bestå matten i både Vgs og Uni . Så takk😊

Halvard Balto

Meget bra!

Halil Ibrahim Keser

Tusen takk. Veldig flink lærer. Gode forklaringer.

Marte Forsberg

Helt topp :D

Jon Mills

Bra side.

Kirsti Beate Årsandøy

Kjempebra!😊

Mari Bertelsen

Bra side. Veldig gode forklaringer😊

Selma Voss

Tror dette kommer til å redde meg på noen prøver fremover. Takk! :D

Caja Magnussen

takk for hjelpen

Abdi Omar

Takk for læreren av denne siden. Det er utrolig en bra side, fikk meg mye. Tusen hjertelig takk

Olav Lunde Arneberg

Kan trygt anbefale Arne Hovland! Beste læreren jeg har hatt i løpet av drøyt 20 år med utdanning.

Daniel Gabrielsen

takk for denne siden :D min 1T mattelærer snakker så monotont og gjør matte så kjedelig at interessen svinner vekk og jeg sovner etter 5 minutter.

Kassi 17 år - har eksamen i R1 til våren.
Min lærer går litt for raskt gjennom r1 pensum, noe som gjør at jeg trenger repetisjon av de vanskeligste emnene...les mer
Liam 34 år - har eksamen i R2 til jul.
Jeg kjøpte medlemskap fordi jeg ønsket forklaring via video og tilgang på "lærer" hele døgnet. Mattevideo er...les mer
Oda 16 år - har eksamen i 1T til våren.
Jeg ble abonnement hos mattevideo fordi jeg slet med å forstå pensum i 1T. Jeg ønsket å prøve, for å se...les mer
Nicolai 21 år - har eksamen i R2 til sommeren.
Jeg ble medlem for å forbedre meg, og gå dypere inn i spesifikke temaer. Jeg går i 10. klasse og tar forsert løp...les mer
Daniel 15 år - har eksamen i 1t til våren.
Jeg ble medlem for å forbedre meg, og gå dypere inn i spesifikke temaer. Jeg går i 10. klasse og tar forsert løp...les mer
June 20 år - preppet til eksamen.
Jeg brukte mattevideo da jeg måtte ta opp igjen eksamen, selvlært. Min gamle lærer gjorde det veldig vanskelig å henge med...les mer
Velg ditt fag
1T er et studieretningsfag på Vg1-nivå. 1T står for "Teoretisk matematikk".
Hele læreplan fra A til Å
Videoundervsining alle temaer
Korte og effektive selvtester
Vi gjennomgår eksamen
Organiser temaene etter ønsket lærebok
Kapittelinndeling: Mattevideo.no 1T
×
Organiser innholdet etter din lærebok
Organiser videoer med ønskede ikoner
Organiser selvtester med ønskede ikoner
Regning og algebra
, curr: 1t, book: 661
13:38
04:08
14:14
17:07
06:08
10:46
09:31
09:42
10:38
19:29
08:10
04:38
08:53
11:03
18:32
13:34
03:24
09:58
21:04
07:06
06:25
02:14
09:01
06:58
13:36
24:33
Trigonometri
, curr: 1t, book: 661
09:22
23:59
12:04
10:45
19:57
29:36
16:30
02:48
12:40
47:53
18:08
09:08
Funksjoner og grafer
, curr: 1t, book: 661
04:40
02:24
22:42
36:54
28:35
13:29
15:34
29:30
21:40
06:22
06:09
05:10
09:41
23:45
Sannsynlighet
, curr: 1t, book: 661
06:24
13:40
02:07
15:13
11:15
04:57
11:36
09:06
12:21
12:21
21:36
21:13
24:06
Algebra
, curr: 1t, book: 661
17:20
15:51
18:37
21:05
10:52
14:39
03:25
24:31
20:52
36:41
21:03
02:33
07:18
10:13
09:34
12:34
Derivasjon
, curr: 1t, book: 661
13:12
05:59
05:15
07:46
09:27
11:51
10:46
05:59
05:32
24:27
19:18
17:05
04:37
Eksamenstid 5 timer Del 1 (Uten hjelpemidler) skal leveres etter 2 timer. Del 2 (Med hjelpemidler) skal leveres etter senest 5 timer.
DEL 1 - Uten hjelpemidler

Oppgave 1 (2 poeng)

 
Løs likningssettet

[5x+2y=43x+4y=6]{ \begin{bmatrix} 5x+2y=4 \\ 3x+4y=-6 \end{bmatrix}}

 

Oppgave 2 (1 poeng)

 
Løs likningen

310x=3000{3 \cdot 10^x = 3000 }

 

Oppgave 3 (2 poeng)

 
Regn ut og skriv svaret på standardform

(0,5106)20,2104+3105{\frac{(0,5 \cdot 10^6)^2}{0,2 \cdot 10^{-4} + 3 \cdot 10^{-5}}}

 

Oppgave 4 (1 poeng)

 
Vis at

15548=3{\sqrt{15 } \cdot \sqrt{5} - \sqrt{48} = \sqrt{3} }  

Oppgave 5 (2 poeng)

 
Regn ut og skriv svaret så enkelt som mulig

lg1000lg103lg1025lg0,00001{\lg{1000} \cdot \lg{\sqrt[3]{10} \cdot \lg{\sqrt[5]{10^2}} \cdot \lg{0,00001}}}

 

Oppgave 6 (3 poeng)

a) Vis at

x(x+2)(x4)=x32x28xx(x+2)(x-4) = x^3 - 2x^2 - 8x

b) Løs likningen

x32x28x=0x^3-2x^2-8x=0

 

Oppgave 7 (2 poeng)

Løs ulikheten

x22x80x^2-2x-8 \geq 0

 

Oppgave 8 (3 poeng)

Funksjonenf{ f }er gitt ved

f(x)=x2+kx+4{f(x)=x^2+kx+4}

For hvilke verdier avk{ k} har grafen til f{ f }
  • ingen skjæringspunkter med x-aksen
  • ett skjæringspunkt med x-aksen
  • to skjæringspunkter med x-aksen
 

Oppgave 9 (3 poeng)

a) Vis at

x+2+1xx313x=3x2+6x+3x21{\frac{x+2+\frac{1}{x}}{\frac{x}{3} - \frac{1}{3x}} = \frac{3x^2+6x+3}{x^2-1}}

b) Skriv så enkelt som mulig

x+2+1xx313x{\frac{x+2+\frac{1}{x}}{\frac{x}{3} - \frac{1}{3x}}}

 

Oppgave 10 (4 poeng)

En funksjon f{ f } er gitt ved

a) Bestem den gjennomsnittlige vekstfarten til i intervallet f[2,2]{f \in \left[ -2, 2 \right]}.

b) Bestem likningen for tangenten til grafen til f{f} i punktet (1,f(1)){ (1, f (1))}.

 

Oppgave 11 (3 poeng)

Tenk deg at du kaster en rød og en blå terning.
Avgjør hvilket av de to alternativene nedenfor som er mest sannsynlig.
  • Terningene viser samme antall øyne.
  • Summen av antall øyne er 5 eller mindre.
 

Oppgave 12 (6 poeng)

 

I en likesidet trekant er alle sidene like lange og alle vinklene 60° . Høyden på en av sidene halverer denne siden.

Høyden deler den likesidete trekanten i to likestore rettvinklete trekanter.

I denne rettvinklete trekanten er vinklene 30° , 60° og 90° . I tillegg er hypotenusen dobbelt så lang som den minste kateten.

Denne sammenhengen kalles 30° , 60° og 90° - setningen. Ovenfor ser du to avsnitt fra en lærebok for 10. klasse.
a) Vis at DC=s32{ DC = \frac{s\sqrt{3}}{2}}
b) Bruk ΔADC{\Delta{ADC} } til å vise at sin60=32\sin{60^{\circ}} = \frac{\sqrt{3}}{2}.
I trekanten PQR{PQR} er PQ=8{PQ = 8} og PR=23{PR = 2 \sqrt{3} }. Se skissen nedenfor.

c) Bestem arealet av ΔPQR{\Delta{PQR}}.
d) Vis at tanQ=383{ \tan {Q} = \frac {3}{8- \sqrt{3}}}  

Oppgave 13 (4 poeng)

  Fire andregradsfunksjoner p , q , r og s er gitt ved
  • p(x)=x22x{p(x) = x^2 - 2x}
  • q(x)=x2+2x2{q(x) = x^2 + 2x - 2}
  • r(x)=4x2{r(x) = 4 - x^2}
  • s(x)=x22x2{s(x) = x^2 - 2x - 2}
Nedenfor ser du seks grafer. Hvilken graf er grafen til p ? Hvilken graf er grafen til q ? Hvilken graf er grafen til r ? Hvilken graf er grafen til s ? Husk å begrunne svarene dine.

 

DEL 2 - Med hjelpemidler  

Oppgave 1 (6 poeng)

 

Tabellen ovenfor viser hvor mye en kroneis kostet noen utvalgte år i perioden fra 1970 til 2017.

a) Legg opplysningene i tabellen ovenfor inn som punkter i et koordinatsystem der x-aksen viser antall år etter 1970 og y-aksen viser pris (kroner).

Funksjonen f er gitt ved     f(x)=0,0054x2+0,26x+0,9    ,    x[0,50]\ \ \ \ f(x)=0,0054x^2 + 0,26x + 0,9 \ \ \ \ , \ \ \ \ x \in {\left[ 0,50 \right]}

b) Tegn grafen til f{f} i samme koordinatsystem som du brukte i oppgave a).

I resten av denne oppgaven skal du bruke funksjonen f{f} som en modell som viser prisen f(x){f(x)} kroner for en kroneis x{x} år etter 1970.

c) Når var prisen for en kroneis 16 kroner, ifølge modellen?

d) Hvor mye har prisen for en kroneis i gjennomsnitt steget med per år fra 1975 til 2015?

 

Oppgave 2 (4 poeng)

  Ved en videregående skole er det 640 elever. I en undersøkelse ble elevene spurt om når de legger seg kvelden før en skoledag.
  • 14{\frac{1}{4}} av elevene svarte at de legger seg før klokka 23.
Det viser seg at
  • 45{\frac{4}{5}} av elevene som legger seg før klokka 23, har et karaktersnitt over fire
  • 13{\frac{1}{3}} av elevene som legger seg etter klokka 23, har et karaktersnitt over fire

a) Lag en krysstabell som illustrerer opplysningene som er gitt ovenfor.

Tenk deg at vi trekker ut en elev ved skolen tilfeldig.

b) Bestem sannsynligheten for at eleven har et karaktersnitt over fire.

Tenk deg at den eleven vi trakk i oppgave b), har et karaktersnitt over fire.

c) Bestem sannsynligheten for at denne eleven legger seg før klokka 23 kvelden før en skoledag.

 

Oppgave 3 (2 poeng)

 

Gitt trekanten ovenfor.
Bruk CAS til å bestemme s .  

Oppgave 4 (6 poeng)

 

Figuren ovenfor viser to rettvinklete trekanter, ΔADC{\Delta{ADC}} og ΔDBC{\Delta{DBC}}. AC=a{AC = a}, BC=b{BC = b}. AD=c1{AD = c_{1}}, CD=h{CD = h}, hvor h{h} er høyden fra C{C}AB{AB}. Maria påstår at høyden h{h} kan uttrykkes på ulike måter:
  • 1) h=acosuh=a \cdot \cos{u}
  • 2) h=bcosvh = b \cdot \cos{v}

a) Vis at Maria har rett

For å bestemme arealet T{T} av ΔABC{\Delta{ABC}} vil Maria regne slik: T=c1h2+c2h2{ T = \frac{c_{1} \cdot h}{2} + \frac{c_{2} \cdot h}{2}}

b) Bruk blant annet resultatet fra oppgave a), og vis at dette uttrykket for arealet kan skrives som

      T=asinubcosv2+bsinvacosu2\ \ \ \ \ \ {T=\frac{a \cdot \sin{u} \cdot b \cdot \cos{v}}{2} + \frac{b \cdot \sin{v} \cdot a \cdot \cos{u}}{2}} Mats bruker arealsetningen og får at arealet av trekanten også kan skrives slik:       T=12absin(u+v)\ \ \ \ \ \ {T=\frac{1}{2}a \cdot b \cdot \sin{(u + v)}}

c) Bruk dette uttrykket og uttrykket du har for arealet fra oppgave b), til å vise at

      sinu+v=sinucosv+sinvcosu\ \ \ \ \ \ {\sin{u+v} = \sin{u} \cdot \cos{v} + \sin{v} \cdot \cos{u}}  

Oppgave 5 (6 poeng)

  En funksjon f er gitt ved       f(x)=x26x+8\ \ \ \ \ \ {f(x)=x^2 - 6x + 8}

a) Vis at tangeten til grafen til f{f} i punktet (4,f(4))(4, f(4)) er parallell med linjen som går gjennom punktet (2,f(2))(2, f(2)) og (6,f(6))(6, f(6)).

Nedenfor ser du grafen til en funksjon g{g} gitt ved       g(x)=ax2+bx+c    ,    a0\ \ \ \ \ \ {g(x)=ax^2 + bx + c \ \ \ \ , \ \ \ \ a \neq 0}

b) Bruk CAS til å bestemme stigningstallet til tangenten til grafen til g i punktet

      M(p+q2,g(p+q2))\ \ \ \ \ \ {M \left(\frac{p+q}{2}, g(\frac{p+q}{2}) \right)}

c) Vis at linjen gjennom punktene P(p,g(p)) og Q(q,g(q)) er parallell med tangenten i oppgave b).

 
Gratis Prøvesmak
Superteknikker
En til en veiledning
1T
 - Kapittelinndeling: Mattevideo.no 1T (gammel læreplan)
 - Derivasjon
 - Derivasjonsregler
×
05:59
Teori 1
Derivasjonsregler.

Derivasjonsregler
×
05:32
Oppgave 1
Høyden av et tre, i cm, t år etter spiring, er tilnærmet gitt ved funksjonen    h(t)=0,03t3+2t2,x[0,40]h(t)= -0,03t^3+2t^2, x \in[0,40]
   a) Finn høyden av treet etter 10 år og etter 30 år.
   b) Finn h(t)h'(t)
   c) Finn treets vekstfart etter 10 år og etter 30 år. 
Skjul video ▼
Vis video ▲
Selvtester og oppgaver for mengdetrening
10 sekunders quiz
Eksamensoppgaver
×
Hva er temaet i videoen?
Integrasjon
Lever svar
Derivasjon
Lever svar
Multiplikasjon
Lever svar
00:00
Hva skjer med eksponenten når vi deriverer en potens?
Den øker med 1
Lever svar
Den minker med 1
Lever svar
Den endres ikke
Lever svar
00:05
Gjelder samme regel også for negative eksponenter?
Ja
Lever svar
Nei
Lever svar
Bare av og til
Lever svar
00:59
Er x i femte en potensfunksjon?
Ja
Lever svar
Nei
Lever svar
Kun hvis eksponenten er 1
Lever svar
01:25
Hva blir n under derivasjon av x opphøyd i n?
n blir en faktor foran
Lever svar
Den forblir uendret
Lever svar
Den blir alltid null
Lever svar
01:27
Kan vi bruke samme derivasjonsregel på 1/x?
Ja
Lever svar
Nei
Lever svar
Bare for heltallseksponenter
Lever svar
01:36
Kan 1/x skrives som x i en negativ potens?
Ja
Lever svar
Nei
Lever svar
Bare i spesielle tilfeller
Lever svar
01:42
Minker eksponenten på samme måte selv om den er negativ?
Ja
Lever svar
Nei
Lever svar
Den øker i stedet
Lever svar
01:57
Kan negative eksponenter omskrives som brøker?
Ja
Lever svar
Nei
Lever svar
Bare av og til
Lever svar
02:02
Gjelder derivasjonsregelen for alle eksponenter?
Ja
Lever svar
Nei
Lever svar
Kun for positive tall
Lever svar
02:12
Hva introduseres nå?
En ny derivasjonsregel
Lever svar
En integrasjonsregel
Lever svar
Ingen ny regel
Lever svar
02:18
Hva med en funksjon multiplisert med en konstant?
Konstanten kan tas ut før derivasjon
Lever svar
Konstanten blir alltid null
Lever svar
Konstanten må endres til x
Lever svar
02:20
Hva gjør vi med konstanten k ved derivasjon?
Trekker den ut før derivasjon
Lever svar
Endrer den til null
Lever svar
Setter den i nevneren
Lever svar
02:34
Hvordan deriverer vi variabledelen?
Etter kjente regler
Lever svar
Vi lar den stå uendret
Lever svar
Vi ganger den med null
Lever svar
02:54
Hva skjer når vi deriverer x²?
2-tallet hopper foran og eksponenten minker med 1
Lever svar
Eksponenten øker med 1
Lever svar
Ingenting endres
Lever svar
02:59
Hva skjer med koeffisienten når vi deriverer et monom?
Den multipliseres med den opprinnelige eksponenten
Lever svar
Den halveres
Lever svar
Den blir alltid null
Lever svar
03:05
Gjelder regelen selv om koeffisienten er en brøk?
Ja
Lever svar
Nei
Lever svar
Kun om brøken er større enn 1
Lever svar
03:14
Kan vi forenkle tall underveis i derivasjonen?
Ja, som vanlig
Lever svar
Nei, aldri
Lever svar
Bare ved heltall
Lever svar
03:30
Kan vi omskrive hele tall for enkelhets skyld?
Ja
Lever svar
Nei
Lever svar
Kun ved delelige tall
Lever svar
03:32
Hva kan vi gjøre med faktorer for å forenkle uttrykket?
Dele dem for å forenkle
Lever svar
Gjøre dem større
Lever svar
La dem være uendret
Lever svar
03:36
Hva betyr x i andre?
Lever svar
Lever svar
x⁰
Lever svar
03:43
Er det viktig å være konsekvent med reglene?
Ja
Lever svar
Nei
Lever svar
Bare av og til
Lever svar
03:45
Hva var regelen for en konstant ganger en funksjon?
Ta konstanten ut og deriver funksjonen
Lever svar
Konstanten blir null
Lever svar
Konstanten legges til eksponenten
Lever svar
03:48
Hva om funksjonen består av to ledd?
Deriver hvert ledd for seg
Lever svar
Ignorer det ene leddet
Lever svar
Legg dem sammen før derivasjon
Lever svar
03:53
Hvordan deriverer vi en sum av to funksjoner?
Deriver hver for seg og summer
Lever svar
Deriver kun den første
Lever svar
Deriver kun den andre
Lever svar
03:57
Hva gjør vi med en funksjon med flere ledd?
Deriver hvert ledd separat
Lever svar
Kombiner leddene før derivasjon
Lever svar
Ignorer alle unntatt ett
Lever svar
04:10
Hvilken regel bekrefter eksempelet?
Deriver hvert ledd for seg
Lever svar
Deriver bare konstanter
Lever svar
Deriver ingen ledd
Lever svar
04:32
Er regelen lett å anvende?
Ja
Lever svar
Nei
Lever svar
Bare i noen tilfeller
Lever svar
04:39
Hva gjør vi med en konstant brøk foran x?
Beholder den og deriverer x-delen
Lever svar
Setter den til null
Lever svar
Gjør den om til et helt tall
Lever svar
04:42
Når vi deriverer x², hva skjer?
2 kommer foran og eksponenten reduseres
Lever svar
Eksponenten øker
Lever svar
Ingenting endres
Lever svar
04:45
Hva er derivasjonen av x?
1
Lever svar
x
Lever svar
0
Lever svar
04:50
Når vi deriverer x, hva blir resultatet?
1
Lever svar
0
Lever svar
x
Lever svar
04:52
Er derivasjonen av et konstant tall 0?
Ja
Lever svar
Nei
Lever svar
Bare hvis tallet er negativt
Lever svar
04:58
Blir alle konstanter null ved derivasjon?
Ja
Lever svar
Nei
Lever svar
Kun positive tall
Lever svar
05:01
Hva er x⁰?
1
Lever svar
0
Lever svar
x
Lever svar
05:22
Hva blir derivasjonen av en konstant?
0
Lever svar
1
Lever svar
Konstanten selv
Lever svar
05:36
Hva gjør vi etter å ha derivert hvert ledd?
Setter dem sammen til en ny funksjon
Lever svar
Sletter dem
Lever svar
Ignorerer resultatet
Lever svar
05:43
Hva er formålet med derivasjon?
Å finne den deriverte funksjonen
Lever svar
Å finne arealer
Lever svar
Å lage mer komplekse uttrykk
Lever svar
05:48
Når f(x)=3x23x+3f(x) = 3x^2 - 3x +3 er :
f(ˊx)=2x3f\'(x) = 2x-3
Lever svar
f(ˊx)=3x3f\'(x) = 3x - 3
Lever svar
f(ˊx)=6x3f\'(x) = 6x - 3
Lever svar
×
Tilbakestill oppgaven som uløst
×
Tilbakestill oppgaven som uløst
×
Tilbakestill oppgaven som uløst

Anta at antall registrerte elbiler i Norge x år etter 2010 tilnærmet er gitt ved funksjonen g der


g(x)=560x31767x2+2501x+2577g(x)=560x^{3}-1767x^{2}+2501x+2577 \quad\quad             0x80\leq x\leq 8


  • a) Bruk graftegner til å tegne grafen til g.
  • b) Bestem g(4)g\left( 4 \right) og g^{\'}\left( 4 \right). Hva forteller disse verdiene om antall elbiler?
Se løsning og registrer oppgaven
×