×
VGS matematikk
1 - 2 - 3 klasse

Lær VGS matten fra A til Å
med de beste metodene

Enkelt å
holde fokus

Forstå det
vanskelige

Få god
oversikt

Øv på
riktig tema

Få hjelp når
du stopper opp

Anne-Lise Frivold Svendsen

Flott opplegg og undervisning😊

Karina Tellmann Marthinussen

Tusen takk!

Ruben Flatås

Gjorde unna R2 som privatist på et halvt år!! Mattevideo har gjort det mye lettere å fordøye et så tungt pensum på så kort tid. Tusen takk for hjelpa!!😊

Vilde Ågotnes

Bra undervisning!

Hamdi A Ahmed

Jeg er fornøyd med videone deres det har hjulpet meg til å bestå matten i både Vgs og Uni . Så takk😊

Halvard Balto

Meget bra!

Halil Ibrahim Keser

Tusen takk. Veldig flink lærer. Gode forklaringer.

Marte Forsberg

Helt topp :D

Jon Mills

Bra side.

Kirsti Beate Årsandøy

Kjempebra!😊

Mari Bertelsen

Bra side. Veldig gode forklaringer😊

Selma Voss

Tror dette kommer til å redde meg på noen prøver fremover. Takk! :D

Caja Magnussen

takk for hjelpen

Abdi Omar

Takk for læreren av denne siden. Det er utrolig en bra side, fikk meg mye. Tusen hjertelig takk

Olav Lunde Arneberg

Kan trygt anbefale Arne Hovland! Beste læreren jeg har hatt i løpet av drøyt 20 år med utdanning.

Daniel Gabrielsen

takk for denne siden :D min 1T mattelærer snakker så monotont og gjør matte så kjedelig at interessen svinner vekk og jeg sovner etter 5 minutter.

Kassi 17 år - har eksamen i R1 til våren.
Min lærer går litt for raskt gjennom r1 pensum, noe som gjør at jeg trenger repetisjon av de vanskeligste emnene...les mer
Liam 34 år - har eksamen i R2 til jul.
Jeg kjøpte medlemskap fordi jeg ønsket forklaring via video og tilgang på "lærer" hele døgnet. Mattevideo er...les mer
Oda 16 år - har eksamen i 1T til våren.
Jeg ble abonnement hos mattevideo fordi jeg slet med å forstå pensum i 1T. Jeg ønsket å prøve, for å se...les mer
Nicolai 21 år - har eksamen i R2 til sommeren.
Jeg ble medlem for å forbedre meg, og gå dypere inn i spesifikke temaer. Jeg går i 10. klasse og tar forsert løp...les mer
Daniel 15 år - har eksamen i 1t til våren.
Jeg ble medlem for å forbedre meg, og gå dypere inn i spesifikke temaer. Jeg går i 10. klasse og tar forsert løp...les mer
June 20 år - preppet til eksamen.
Jeg brukte mattevideo da jeg måtte ta opp igjen eksamen, selvlært. Min gamle lærer gjorde det veldig vanskelig å henge med...les mer
Velg ditt fag
R1 er et studieretningsfag på Vg2-nivå. R1 står for "Realfaglig matematikk".
Hele læreplan fra A til Å
Videoundervsining alle temaer
Korte og effektive selvtester
Vi gjennomgår eksamen
Organiser temaene etter ønsket lærebok
Kapittelinndeling: Aschehoug R1
×
Organiser innholdet etter din lærebok
Organiser videoer med ønskede ikoner
Organiser selvtester med ønskede ikoner
Potenser og logaritmer
, curr: r1, book: 1583
31:02
19:21
21:51
04:32
11:20
36:25
61:05
05:30
Grenseverdier og kontinuitet
, curr: r1, book: 1583
12:55
05:03
66:44
08:47
12:10
16:28
25:42
27:48
Derivasjon
, curr: r1, book: 1583
17:10
05:32
19:11
07:48
42:57
24:16
12:16
10:18
01:15
09:15
06:25
06:22
21:22
Bruk av derivasjon
, curr: r1, book: 1583
47:00
18:48
48:53
37:56
05:45
12:48
34:28
14:31
Omvendte funksjoner
, curr: r1, book: 1583
19:07
16:53
11:23
05:31
02:05
Vektorer
, curr: r1, book: 1583
21:22
21:01
22:08
16:38
11:28
10:39
49:26
10:50
25:46
66:25
Anvendelser og modeller
, curr: r1, book: 1583
30:23
06:51
28:34
08:00
45:19
24:16
12:15
Flere temaer
, curr: r1, book: 1583
36:53
42:44
Eksamenstid 5 timer Del 1 (Uten hjelpemidler) skal leveres etter 2 timer. Del 2 (Med hjelpemidler) skal leveres etter senest 5 timer.

Oppgave 1 (5 poeng)

  Deriver funksjonene

a) f(x)=2x35x+4f(x)=2x^3-5x+4

b) g(x)=x2exg(x)=x^2e^x

c) h(x)=x23h(x)=\sqrt{x^2-3}

   

Oppgave 2 (4 poeng)

  Skriv så enkelt som mulig

a) x23x29+1x+3+5x3{\frac{x^2-3}{x^2-9} + \frac{1}{x+3} + \frac{5}{x-3}}

b) 2ln(a3b2)    3ln(ba2)2 \cdot ln(a^{-3} \cdot b^{2}) \ \ - \ \ 3 \cdot ln(\frac{b}{a^2})

 

Oppgave 3 (4 poeng)

  Tre punkt A(1,6)A(-1,6), B(2,1)B(2,1) og C(4,4)C(4,4) er gitt.

a) Bestem AB\overrightarrow{AB} og AC\overrightarrow{AC}

  Et punkt DD er gitt slik at

b) Bestem koordinatene til DD

Oppgave 4 (6 poeng)

  Funksjonen P er gitt ved

P(x)=2x36x22x+6{P(x)=2x^3-6x^2-2x+6}

 
a) Begrunn at (1,0){(1,0)} er et vendepunkt på grafen til P{P}.
b) Faktoriser P(x){P(x)} i lineære faktorer.
c) Løs likningen

2e3x6e2x2ex+6=0{2e^{3x}-6e^{2x}-2e^x+6=0}

 

Oppgave 5 (6 poeng)

 

Hjørnene i en trekant er A(1,0){A(1,0)} , B(6,2){B(6,2)} og C(3,5){C(3,5)} . Midtpunktene på sidene i trekanten er D{D}, E{E} og F{F}. Se figuren.

a) Forklar at koordinatene til punktene D{D}, E{E} og F{F} er

D(92,72){D \big(\frac{9}{2},\frac{7}{2} \big)}, E(2,52){E \big(2, \frac{5}{2} \big)} og F(72,1){F \big(\frac{7}{2}, 1 \big)}

Skjæringspunktet mellom medianene i trekanten er T.

b) Forklar at vi kan skrive AT{\overrightarrow{AT}} på to måter:

AT=sAD    ,    s=R{\overrightarrow{AT} = s \cdot \overrightarrow{AD}} \ \ \ \ , \ \ \ \ s = \mathbb{R}

AT=AB+tBE    ,    t=R{\overrightarrow{AT} = \overrightarrow{AB} + t \cdot \overrightarrow{BE}} \ \ \ \ , \ \ \ \ t = \mathbb{R}

der s og t er reelle tall.

c) Bruk vektorlikningene i oppgave b) til å bestemme s og t. Bestem koordinatene til T.

Oppgave 6 (4 poeng)

  En fabrikk produserer lyspærer. Alle lyspærene blir kontrollert. I kontrollen blir 8,0 % av lyspærene forkastet. Nærmere undersøkelser viser at
  • 92,0 % av de forkastede lyspærene er defekte
  • 2,0 % av de godkjente lyspærene er defekte
a) Vis at sannsynligheten er 9,2 % for at en tilfeldig produsert lyspære er defekt.
b) Bruk Bayes' setning til å bestemme sannsynligheten for at en defekt lyspære blir forkastet i kontrollen.    

Oppgave 7 (7 poeng)

En rettvinklet ΔABC\Delta{ABC} der C=90o\angle{C} = 90^{o} er gitt. Den innskrevne sirkelen har sentrum i S{S} og radius r{r}. Sirkelen tangerer trekanten i punktene D{D}, E{E} og F{F}. Vi setter AC=b{AC = b}, BC=a{BC = a} og AB=c{ AB = c}. Du får oppgitt at BF=BE{BF = BE} og AD=AE{AD = AE}

a) Bruk figuren til å forklare at a=BF+r{a = BF +r} og b=AD+r{b = AD +r}

Av figuren ser vi dessuten at c=AE+BE{c = AE + BE}

b) Vis at a+bc=2r{a + b - c = 2r}

c) Forklare at vi kan skrive arealet T av trekanten på to måter:

T=12ab{T = \frac{1}{2} \cdot a \cdot b} og T=12r(a+b+c){T = \frac{1}{2} \cdot r \cdot (a+b+c)}

d) Bruk resultatene du fant i oppgavene b) og c) til å utlede Pytagoras' setning.

DEL 2 - Med hjelpemidler

Oppgave 1 (6 poeng)

  I en kortstokk er det 52 kort. Kortene er fordelt på de fire fargene hjerter, ruter, spar og kløver. Hver farge har 13 kort fordelt på verdiene 2 til 10, knekt, dame, konge og ess. Tenk deg at du skal trekke tilfeldig fem kort fra kortstokken.

a) Bestem sannsynligheten for at du kommer til å trekke nøyaktig tre kort med verdi 10.

b) Bestem sannsynligheten for at du kommer til å trekke nøyaktig tre kort med samme verdi.

c) Bestem sannsynligheten for at alle kortene du kommer til å trekke, har samme farge.

Figur 1: Ett mulig utfall i oppgave a) Figur 2: Ett mulig utfall i oppgave b) Figur 3: Ett mulig utfall i oppgave c)  

Oppgave 2 (6 poeng)

Posisjonsvektoren til en partikkel er gitt ved

r(t)=[t21,t3t]{\overrightarrow{r}(t)= \left[ t^2-1,t^3-t \right] }

a) Tegn grafen til r{\overrightarrow{r}} når t[32,32]t \in \left[ -\frac{3}{2}, \frac{3}{2} \right].
b) Bestem fertsvektoren v(t){\overrightarrow{v}}(t) og akselerasjonsvektoren a(t){\overrightarrow{a}(t)}.
c) Bruk CAS til å bestemme den minste banefarten til partikkelen.

Oppgave 3 (4 poeng)

En stige på 7,0 m er stilt opp langs en vegg. Stigen danner sammen med veggen og bakken en rettvinkler ΔABC{\Delta{ABC}}. Se figuren. Vi setterAC=x{ AC = x}. Den korteste avstanden fra C{C } til stigen er d{d} meter.

a) Vis at d=x49x27d = {\frac{x \sqrt{49-x^2}}{7} }

b) Bestem x{x} slik at d{d} blir lengst mulig.

Hvor lang er d for denne verdien av x ?

 

 

Oppgave 4 (8 poeng)

  Funksjonen f{f } er gitt ved

f(x)=2x36x2+5x{f(x)=2x^3 - 6x^2 + 5x}

a) Bruk graftegner til å tegne grafen til f{f}.

Grafen tilf{ f} har tre tangenter som går gjennom punktetA(4,3){ A(4, 3)} .

b) Forklar at x-koordinaten til tangeringspunktene må være løsning av likningen

f(x)3x4=f(x){{\frac{f(x)-3}{x-4}} = f'(x)}

c) Bruk CAS til å løse denne likningen. Bestem likningen til hver av tangentene.

La P(a,b){P(a, b)} være et punkt i planet.

d) Hva er det maksimale antallet tangenter grafen til f{f }kan ha som går gjennom P{P }?

Gratis Prøvesmak
Superteknikker
En til en veiledning
R1
 - Kapittelinndeling: Aschehoug R1 (oppdatert læreplan)
 - Anvendelser og modeller
 - Reelle datasett
×
04:37
Teori 1
Lineær regresjon i Geogebra.r1-2021_06_03_teori2_20399_1500_1623
×
03:49
Teori 2
Eksponentiell vekst, regresjon
03:49
Teori 3
Logistisk vekst, regresjon.
Skjul video ▼
Vis video ▲
Selvtester og oppgaver for mengdetrening
10 sekunders quiz
Eksamensoppgaver
×
Er eksponentiell regresjon en metode for å beskrive vekst?
Nei
Lever svar
Ja
Lever svar
Bare for lineære data
Lever svar
00:00
Kan en populasjon øke over tid i et gunstig miljø?
Aldri
Lever svar
Ja
Lever svar
Kun hvis den er konstant
Lever svar
00:08
Øker en raskt voksende bestand betydelig i løpet av få timer?
Nei, den holder seg stabil
Lever svar
Ja, den kan det
Lever svar
Bare hvis timene er over 24
Lever svar
00:18
Brukes funksjonsmodeller for å forutsi utvikling over tid?
Ja
Lever svar
Nei, aldri
Lever svar
Kun for statiske data
Lever svar
00:30
Er det nyttig å organisere data i en tabell før analyse?
Ja, det gir oversikt
Lever svar
Nei, det er bortkastet
Lever svar
Kun hvis data er lineære
Lever svar
00:34
Bør man justere visningen for å se alle punkter tydelig?
Nei, det er unødvendig
Lever svar
Ja, da får man oversikt
Lever svar
Det spiller ingen rolle
Lever svar
00:52
Kan man lage en liste med punkter av merkede data?
Ja
Lever svar
Nei
Lever svar
Bare med lineær regresjon
Lever svar
01:03
Finnes det ofte et regnearkverktøy i matematiske programmer?
Ja
Lever svar
Nei
Lever svar
Kun i tekstbehandlere
Lever svar
01:07
Er høyreklikk ofte en snarvei for flere valg?
Ja
Lever svar
Nei
Lever svar
Bare i nettlesere
Lever svar
01:10
Kan man panorere i et grafisk vindu for bedre oversikt?
Ja, absolutt
Lever svar
Nei, det forblir fast
Lever svar
Bare i tekstmodus
Lever svar
01:15
Er det lurt å vurdere justeringer i visningen underveis?
Nei, man bør aldri endre noe
Lever svar
Ja, man bør tilpasse etter behov
Lever svar
Kun før man starter
Lever svar
01:26
Hjelper små justeringer i koordinatsystemet for å se data tydelig?
Ja
Lever svar
Nei
Lever svar
Bare ved lineær funksjon
Lever svar
01:30
Er det ofte nok å se et par hovedpunkter for å vurdere trenden?
Ja, som en rask sjekk
Lever svar
Nei, man må se alt
Lever svar
Bare hvis data ikke endres
Lever svar
01:32
Bør man kontrollere at punktene stemmer med tabellen?
Ja, for å unngå feil
Lever svar
Nei, ikke nødvendig
Lever svar
Bare hvis grafen mangler
Lever svar
01:35
Kan eksponentialregresjon gi oss en funksjon for dataene?
Nei, den gir bare tabeller
Lever svar
Ja, den estimerer en funksjon
Lever svar
Den gir bare lineær kurve
Lever svar
01:45
Er det lurt å navngi dataene sine (f.eks. liste) i programmet?
Ja, for å holde orden
Lever svar
Nei, det er bortkastet
Lever svar
Bare ved lineær data
Lever svar
02:01
Bekrefter man ofte kommandoer med Enter?
Ja
Lever svar
Nei
Lever svar
Det varierer fra gang til gang
Lever svar
02:07
Er avrunding til flere desimaler nyttig ved detaljerte beregninger?
Nei, man bør aldri runde
Lever svar
Ja, det gir presisjon
Lever svar
Kun ved heltall
Lever svar
02:24
Kan man teste ulike regresjonskommandoer for å se flere løsninger?
Ja
Lever svar
Nei
Lever svar
Bare i tekstprogrammer
Lever svar
02:28
Gjentas ofte samme prosedyre når man tester nye kommandoer?
Ja
Lever svar
Nei
Lever svar
Bare hvis man glemmer den gamle
Lever svar
02:35
Viser programmet noen ganger samme tall, men i ulik formel?
Nei, det er umulig
Lever svar
Ja, det kan skje
Lever svar
Bare med lineær regresjon
Lever svar
02:43
Kan en eksponentialfunksjon ha en startverdi og en vekstrate?
Ja
Lever svar
Nei, kun startverdi
Lever svar
Den har kun lineær stigning
Lever svar
02:50
Er det smart å beskrive fremgangsmåten man har brukt?
Ja, for dokumentasjon
Lever svar
Nei, det tar for lang tid
Lever svar
Kun om noen spør
Lever svar
02:57
Kan samme datasett beskrives med ulike eksponentialformler?
Ja
Lever svar
Nei
Lever svar
Kun én mulig formel
Lever svar
03:26
Representerer e en matematisk konstant i eksponentialfunksjoner?
Ja, cirka 2,71828
Lever svar
Nei, det er bare et symbol
Lever svar
Bare i lineære modeller
Lever svar
03:36
Uttrykker k-verdien vekstraten i en eksponentialmodell?
Nei, den er tilfeldig
Lever svar
Ja, den viser vekst per tidsenhet
Lever svar
Kun relevant i lineære funksjoner
Lever svar
03:39
Kan to ulike formler representere samme eksponentialkurve?
Nei, det er umulig
Lever svar
Ja, de kan være ekvivalente
Lever svar
Kun hvis de er lineære
Lever svar
03:47
Er eksponentiell regresjon en metode for å beskrive vekst?
Nei
Lever svar
Ja
Lever svar
Bare for lineære data
Lever svar
00:00
Kan en populasjon øke over tid i et gunstig miljø?
Aldri
Lever svar
Ja
Lever svar
Kun hvis den er konstant
Lever svar
00:08
Øker en raskt voksende bestand betydelig i løpet av få timer?
Nei, den holder seg stabil
Lever svar
Ja, den kan det
Lever svar
Bare hvis timene er over 24
Lever svar
00:18
Brukes funksjonsmodeller for å forutsi utvikling over tid?
Ja
Lever svar
Nei, aldri
Lever svar
Kun for statiske data
Lever svar
00:30
Er det nyttig å organisere data i en tabell før analyse?
Ja, det gir oversikt
Lever svar
Nei, det er bortkastet
Lever svar
Kun hvis data er lineære
Lever svar
00:34
Bør man justere visningen for å se alle punkter tydelig?
Nei, det er unødvendig
Lever svar
Ja, da får man oversikt
Lever svar
Det spiller ingen rolle
Lever svar
00:52
Kan man lage en liste med punkter av merkede data?
Ja
Lever svar
Nei
Lever svar
Bare med lineær regresjon
Lever svar
01:03
Finnes det ofte et regnearkverktøy i matematiske programmer?
Ja
Lever svar
Nei
Lever svar
Kun i tekstbehandlere
Lever svar
01:07
Er høyreklikk ofte en snarvei for flere valg?
Ja
Lever svar
Nei
Lever svar
Bare i nettlesere
Lever svar
01:10
Kan man panorere i et grafisk vindu for bedre oversikt?
Ja, absolutt
Lever svar
Nei, det forblir fast
Lever svar
Bare i tekstmodus
Lever svar
01:15
Er det lurt å vurdere justeringer i visningen underveis?
Nei, man bør aldri endre noe
Lever svar
Ja, man bør tilpasse etter behov
Lever svar
Kun før man starter
Lever svar
01:26
Hjelper små justeringer i koordinatsystemet for å se data tydelig?
Ja
Lever svar
Nei
Lever svar
Bare ved lineær funksjon
Lever svar
01:30
Er det ofte nok å se et par hovedpunkter for å vurdere trenden?
Ja, som en rask sjekk
Lever svar
Nei, man må se alt
Lever svar
Bare hvis data ikke endres
Lever svar
01:32
Bør man kontrollere at punktene stemmer med tabellen?
Ja, for å unngå feil
Lever svar
Nei, ikke nødvendig
Lever svar
Bare hvis grafen mangler
Lever svar
01:35
Kan eksponentialregresjon gi oss en funksjon for dataene?
Nei, den gir bare tabeller
Lever svar
Ja, den estimerer en funksjon
Lever svar
Den gir bare lineær kurve
Lever svar
01:45
Er det lurt å navngi dataene sine (f.eks. liste) i programmet?
Ja, for å holde orden
Lever svar
Nei, det er bortkastet
Lever svar
Bare ved lineær data
Lever svar
02:01
Bekrefter man ofte kommandoer med Enter?
Ja
Lever svar
Nei
Lever svar
Det varierer fra gang til gang
Lever svar
02:07
Er avrunding til flere desimaler nyttig ved detaljerte beregninger?
Nei, man bør aldri runde
Lever svar
Ja, det gir presisjon
Lever svar
Kun ved heltall
Lever svar
02:24
Kan man teste ulike regresjonskommandoer for å se flere løsninger?
Ja
Lever svar
Nei
Lever svar
Bare i tekstprogrammer
Lever svar
02:28
Gjentas ofte samme prosedyre når man tester nye kommandoer?
Ja
Lever svar
Nei
Lever svar
Bare hvis man glemmer den gamle
Lever svar
02:35
Viser programmet noen ganger samme tall, men i ulik formel?
Nei, det er umulig
Lever svar
Ja, det kan skje
Lever svar
Bare med lineær regresjon
Lever svar
02:43
Kan en eksponentialfunksjon ha en startverdi og en vekstrate?
Ja
Lever svar
Nei, kun startverdi
Lever svar
Den har kun lineær stigning
Lever svar
02:50
Er det smart å beskrive fremgangsmåten man har brukt?
Ja, for dokumentasjon
Lever svar
Nei, det tar for lang tid
Lever svar
Kun om noen spør
Lever svar
02:57
Kan samme datasett beskrives med ulike eksponentialformler?
Ja
Lever svar
Nei
Lever svar
Kun én mulig formel
Lever svar
03:26
Representerer e en matematisk konstant i eksponentialfunksjoner?
Ja, cirka 2,71828
Lever svar
Nei, det er bare et symbol
Lever svar
Bare i lineære modeller
Lever svar
03:36
Uttrykker k-verdien vekstraten i en eksponentialmodell?
Nei, den er tilfeldig
Lever svar
Ja, den viser vekst per tidsenhet
Lever svar
Kun relevant i lineære funksjoner
Lever svar
03:39
Kan to ulike formler representere samme eksponentialkurve?
Nei, det er umulig
Lever svar
Ja, de kan være ekvivalente
Lever svar
Kun hvis de er lineære
Lever svar
03:47
Omhandler videoen lineær regresjon?
Nei
Lever svar
Ja
Lever svar
Usikker
Lever svar
00:00
Fortsetter forklaringen etter introduksjonen?
Nei
Lever svar
Ja
Lever svar
Kanskje
Lever svar
00:09
Vises det uventede ting på skjermen?
Nei
Lever svar
Ja
Lever svar
Vet ikke
Lever svar
00:12
Åpnes et program her?
Nei
Lever svar
Ja
Lever svar
Bare delvis
Lever svar
00:15
Legges det inn flere punkter?
Nei
Lever svar
Ja
Lever svar
Vet ikke
Lever svar
00:20
Omhandler dette bruk av punkter?
Nei
Lever svar
Ja
Lever svar
Usikkert
Lever svar
00:28
Føres det inn koordinater?
Nei
Lever svar
Ja
Lever svar
Kanskje
Lever svar
00:45
Lages en regresjonslinje av punktene?
Nei
Lever svar
Ja
Lever svar
Bare noen ganger
Lever svar
00:54
Skal linjen samsvare best mulig med punktene?
Nei
Lever svar
Ja
Lever svar
Uvisst
Lever svar
01:15
Brukes en LinReg-kommando?
Nei
Lever svar
Ja
Lever svar
Vet ikke
Lever svar
01:19
Er en spesifikk kommando helt nødvendig her?
Ja
Lever svar
Nei
Lever svar
Bare av og til
Lever svar
01:30
Skal man sjekke noe før videre arbeid?
Nei
Lever svar
Ja
Lever svar
Kanskje senere
Lever svar
01:34
Kan man bruke hjelpefunksjon for å se kommandoer?
Nei
Lever svar
Ja
Lever svar
Bare i teorien
Lever svar
01:38
Er hjelpen online?
Nei
Lever svar
Ja
Lever svar
Usikkert
Lever svar
01:44
Viser hjelpen kommandoer umiddelbart?
Nei
Lever svar
Ja
Lever svar
Av og til
Lever svar
02:01
Kan man gå for langt i søket?
Nei
Lever svar
Ja
Lever svar
Uklart
Lever svar
02:16
Må kommandoene skrives med spesifikt format?
Nei
Lever svar
Ja
Lever svar
Vet ikke
Lever svar
02:23
Er et enkelt bekreftende utsagn gitt?
Nei
Lever svar
Ja
Lever svar
Muligens
Lever svar
03:02
Passer regresjonslinjen ikke perfekt gjennom punktene?
Nei
Lever svar
Ja
Lever svar
Av og til
Lever svar
03:03
Har linjen et matematisk uttrykk?
Nei
Lever svar
Ja
Lever svar
Uvisst
Lever svar
03:15
Er det en pause eller utelatelse her?
Nei
Lever svar
Ja
Lever svar
Vet ikke
Lever svar
03:23
Brukes korrelasjonskoeffisient for å vurdere regresjon?
Nei
Lever svar
Ja
Lever svar
Kanskje
Lever svar
03:24
Angis det at det skjer mye merkelige ting?
Nei
Lever svar
Ja
Lever svar
Usikkert
Lever svar
03:37
Brukes en liste av punkter i kommandoen?
Nei
Lever svar
Ja
Lever svar
Bare et punkt
Lever svar
03:44
Er det en nølende uttalelse her?
Nei
Lever svar
Ja
Lever svar
Uvisst
Lever svar
03:55
Refereres det til store bokstavnavn?
Nei
Lever svar
Ja
Lever svar
Bare tall
Lever svar
03:58
Er en korrelasjonsverdi nær 1 god?
Nei
Lever svar
Ja
Lever svar
Vet ikke
Lever svar
04:07
Avsluttes delen her?
Nei
Lever svar
Ja
Lever svar
Kanskje
Lever svar
04:27
Indikerer utsagnet en avslutning?
Nei
Lever svar
Ja
Lever svar
Usikkert
Lever svar
04:34

Hvilken kommando gir logistisk regresjon i Geogebra?

Reglog

Lever svar

Du kan velge mellom reglog og reglogist

Lever svar

Du må bruke reglogist. (Reglog gir logaritmisk regresjon)

Lever svar
×
Tilbakestill oppgaven som uløst
×
Tilbakestill oppgaven som uløst
×
Tilbakestill oppgaven som uløst

I geogebra kan man gjøre regresjon med kommandoene regeksp og regeksp2. Gir begge eksponentiell regresjon?

Ja, ingen forskjell.

Lever svar

Ja, den ene gir funksjon av typen f(x)=abxf(x) = a \cdot b^x, mens den andre gir funksjon av typen f(x)=aekxf(x) = a \cdot e^{kx} .

Lever svar

Nei. 

Lever svar
×
Tilbakestill oppgaven som uløst
×
Tilbakestill oppgaven som uløst
×
Tilbakestill oppgaven som uløst
Hvordan kan du sjekke hvor god regresjonen er?
Legge inn en korrelasjonskoeffisient.
Lever svar
Det er umulig.
Lever svar
Bruke færre punkter.
Lever svar
×
Tilbakestill oppgaven som uløst
×
Tilbakestill oppgaven som uløst
×
Tilbakestill oppgaven som uløst
Hvilken type funksjon gir RegEksp(2) oss?
f(x) = CekxxC*e^{kx} *x
Lever svar
f(x) = CekxC*e^{kx}
Lever svar
f(x) = CaxC*a^{x}
Lever svar
×
Tilbakestill oppgaven som uløst
×
Tilbakestill oppgaven som uløst
×
Tilbakestill oppgaven som uløst