×
VGS matematikk
1 - 2 - 3 klasse

Lær VGS matten fra A til Å
med de beste metodene

Enkelt å
holde fokus

Forstå det
vanskelige

Få god
oversikt

Øv på
riktig tema

Få hjelp når
du stopper opp

Anne-Lise Frivold Svendsen

Flott opplegg og undervisning😊

Karina Tellmann Marthinussen

Tusen takk!

Ruben Flatås

Gjorde unna R2 som privatist på et halvt år!! Mattevideo har gjort det mye lettere å fordøye et så tungt pensum på så kort tid. Tusen takk for hjelpa!!😊

Vilde Ågotnes

Bra undervisning!

Hamdi A Ahmed

Jeg er fornøyd med videone deres det har hjulpet meg til å bestå matten i både Vgs og Uni . Så takk😊

Halvard Balto

Meget bra!

Halil Ibrahim Keser

Tusen takk. Veldig flink lærer. Gode forklaringer.

Marte Forsberg

Helt topp :D

Jon Mills

Bra side.

Kirsti Beate Årsandøy

Kjempebra!😊

Mari Bertelsen

Bra side. Veldig gode forklaringer😊

Selma Voss

Tror dette kommer til å redde meg på noen prøver fremover. Takk! :D

Caja Magnussen

takk for hjelpen

Abdi Omar

Takk for læreren av denne siden. Det er utrolig en bra side, fikk meg mye. Tusen hjertelig takk

Olav Lunde Arneberg

Kan trygt anbefale Arne Hovland! Beste læreren jeg har hatt i løpet av drøyt 20 år med utdanning.

Daniel Gabrielsen

takk for denne siden :D min 1T mattelærer snakker så monotont og gjør matte så kjedelig at interessen svinner vekk og jeg sovner etter 5 minutter.

Kassi 17 år - har eksamen i R1 til våren.
Min lærer går litt for raskt gjennom r1 pensum, noe som gjør at jeg trenger repetisjon av de vanskeligste emnene...les mer
Liam 34 år - har eksamen i R2 til jul.
Jeg kjøpte medlemskap fordi jeg ønsket forklaring via video og tilgang på "lærer" hele døgnet. Mattevideo er...les mer
Oda 16 år - har eksamen i 1T til våren.
Jeg ble abonnement hos mattevideo fordi jeg slet med å forstå pensum i 1T. Jeg ønsket å prøve, for å se...les mer
Nicolai 21 år - har eksamen i R2 til sommeren.
Jeg ble medlem for å forbedre meg, og gå dypere inn i spesifikke temaer. Jeg går i 10. klasse og tar forsert løp...les mer
Daniel 15 år - har eksamen i 1t til våren.
Jeg ble medlem for å forbedre meg, og gå dypere inn i spesifikke temaer. Jeg går i 10. klasse og tar forsert løp...les mer
June 20 år - preppet til eksamen.
Jeg brukte mattevideo da jeg måtte ta opp igjen eksamen, selvlært. Min gamle lærer gjorde det veldig vanskelig å henge med...les mer
Velg ditt fag
R1 er et studieretningsfag på Vg2-nivå. R1 står for "Realfaglig matematikk".
Hele læreplan fra A til Å
Videoundervsining alle temaer
Korte og effektive selvtester
Vi gjennomgår eksamen
Organiser temaene etter ønsket lærebok
Kapittelinndeling: Aschehoug R1
×
Organiser innholdet etter din lærebok
Organiser videoer med ønskede ikoner
Organiser selvtester med ønskede ikoner
Potenser og logaritmer
, curr: r1, book: 1583
31:02
19:21
21:51
04:32
11:20
36:25
61:05
05:30
Grenseverdier og kontinuitet
, curr: r1, book: 1583
12:55
05:03
66:44
08:47
12:10
16:28
25:42
27:48
Derivasjon
, curr: r1, book: 1583
17:10
05:32
19:11
07:48
42:57
24:16
12:16
10:18
01:15
09:15
06:25
06:22
21:22
Bruk av derivasjon
, curr: r1, book: 1583
47:00
18:48
48:53
37:56
05:45
12:48
34:28
14:31
Omvendte funksjoner
, curr: r1, book: 1583
19:07
16:53
11:23
05:31
02:05
Vektorer
, curr: r1, book: 1583
21:22
21:01
22:08
16:38
11:28
10:39
49:26
10:50
25:46
66:25
Anvendelser og modeller
, curr: r1, book: 1583
30:23
06:51
28:34
08:00
45:19
24:16
12:15
Flere temaer
, curr: r1, book: 1583
36:53
42:44
Eksamenstid 5 timer Del 1 (Uten hjelpemidler) skal leveres etter 2 timer. Del 2 (Med hjelpemidler) skal leveres etter senest 5 timer.

Oppgave 1 (5 poeng)

  Deriver funksjonene

a) f(x)=2x35x+4f(x)=2x^3-5x+4

b) g(x)=x2exg(x)=x^2e^x

c) h(x)=x23h(x)=\sqrt{x^2-3}

   

Oppgave 2 (4 poeng)

  Skriv så enkelt som mulig

a) x23x29+1x+3+5x3{\frac{x^2-3}{x^2-9} + \frac{1}{x+3} + \frac{5}{x-3}}

b) 2ln(a3b2)    3ln(ba2)2 \cdot ln(a^{-3} \cdot b^{2}) \ \ - \ \ 3 \cdot ln(\frac{b}{a^2})

 

Oppgave 3 (4 poeng)

  Tre punkt A(1,6)A(-1,6), B(2,1)B(2,1) og C(4,4)C(4,4) er gitt.

a) Bestem AB\overrightarrow{AB} og AC\overrightarrow{AC}

  Et punkt DD er gitt slik at

b) Bestem koordinatene til DD

Oppgave 4 (6 poeng)

  Funksjonen P er gitt ved

P(x)=2x36x22x+6{P(x)=2x^3-6x^2-2x+6}

 
a) Begrunn at (1,0){(1,0)} er et vendepunkt på grafen til P{P}.
b) Faktoriser P(x){P(x)} i lineære faktorer.
c) Løs likningen

2e3x6e2x2ex+6=0{2e^{3x}-6e^{2x}-2e^x+6=0}

 

Oppgave 5 (6 poeng)

 

Hjørnene i en trekant er A(1,0){A(1,0)} , B(6,2){B(6,2)} og C(3,5){C(3,5)} . Midtpunktene på sidene i trekanten er D{D}, E{E} og F{F}. Se figuren.

a) Forklar at koordinatene til punktene D{D}, E{E} og F{F} er

D(92,72){D \big(\frac{9}{2},\frac{7}{2} \big)}, E(2,52){E \big(2, \frac{5}{2} \big)} og F(72,1){F \big(\frac{7}{2}, 1 \big)}

Skjæringspunktet mellom medianene i trekanten er T.

b) Forklar at vi kan skrive AT{\overrightarrow{AT}} på to måter:

AT=sAD    ,    s=R{\overrightarrow{AT} = s \cdot \overrightarrow{AD}} \ \ \ \ , \ \ \ \ s = \mathbb{R}

AT=AB+tBE    ,    t=R{\overrightarrow{AT} = \overrightarrow{AB} + t \cdot \overrightarrow{BE}} \ \ \ \ , \ \ \ \ t = \mathbb{R}

der s og t er reelle tall.

c) Bruk vektorlikningene i oppgave b) til å bestemme s og t. Bestem koordinatene til T.

Oppgave 6 (4 poeng)

  En fabrikk produserer lyspærer. Alle lyspærene blir kontrollert. I kontrollen blir 8,0 % av lyspærene forkastet. Nærmere undersøkelser viser at
  • 92,0 % av de forkastede lyspærene er defekte
  • 2,0 % av de godkjente lyspærene er defekte
a) Vis at sannsynligheten er 9,2 % for at en tilfeldig produsert lyspære er defekt.
b) Bruk Bayes' setning til å bestemme sannsynligheten for at en defekt lyspære blir forkastet i kontrollen.    

Oppgave 7 (7 poeng)

En rettvinklet ΔABC\Delta{ABC} der C=90o\angle{C} = 90^{o} er gitt. Den innskrevne sirkelen har sentrum i S{S} og radius r{r}. Sirkelen tangerer trekanten i punktene D{D}, E{E} og F{F}. Vi setter AC=b{AC = b}, BC=a{BC = a} og AB=c{ AB = c}. Du får oppgitt at BF=BE{BF = BE} og AD=AE{AD = AE}

a) Bruk figuren til å forklare at a=BF+r{a = BF +r} og b=AD+r{b = AD +r}

Av figuren ser vi dessuten at c=AE+BE{c = AE + BE}

b) Vis at a+bc=2r{a + b - c = 2r}

c) Forklare at vi kan skrive arealet T av trekanten på to måter:

T=12ab{T = \frac{1}{2} \cdot a \cdot b} og T=12r(a+b+c){T = \frac{1}{2} \cdot r \cdot (a+b+c)}

d) Bruk resultatene du fant i oppgavene b) og c) til å utlede Pytagoras' setning.

DEL 2 - Med hjelpemidler

Oppgave 1 (6 poeng)

  I en kortstokk er det 52 kort. Kortene er fordelt på de fire fargene hjerter, ruter, spar og kløver. Hver farge har 13 kort fordelt på verdiene 2 til 10, knekt, dame, konge og ess. Tenk deg at du skal trekke tilfeldig fem kort fra kortstokken.

a) Bestem sannsynligheten for at du kommer til å trekke nøyaktig tre kort med verdi 10.

b) Bestem sannsynligheten for at du kommer til å trekke nøyaktig tre kort med samme verdi.

c) Bestem sannsynligheten for at alle kortene du kommer til å trekke, har samme farge.

Figur 1: Ett mulig utfall i oppgave a) Figur 2: Ett mulig utfall i oppgave b) Figur 3: Ett mulig utfall i oppgave c)  

Oppgave 2 (6 poeng)

Posisjonsvektoren til en partikkel er gitt ved

r(t)=[t21,t3t]{\overrightarrow{r}(t)= \left[ t^2-1,t^3-t \right] }

a) Tegn grafen til r{\overrightarrow{r}} når t[32,32]t \in \left[ -\frac{3}{2}, \frac{3}{2} \right].
b) Bestem fertsvektoren v(t){\overrightarrow{v}}(t) og akselerasjonsvektoren a(t){\overrightarrow{a}(t)}.
c) Bruk CAS til å bestemme den minste banefarten til partikkelen.

Oppgave 3 (4 poeng)

En stige på 7,0 m er stilt opp langs en vegg. Stigen danner sammen med veggen og bakken en rettvinkler ΔABC{\Delta{ABC}}. Se figuren. Vi setterAC=x{ AC = x}. Den korteste avstanden fra C{C } til stigen er d{d} meter.

a) Vis at d=x49x27d = {\frac{x \sqrt{49-x^2}}{7} }

b) Bestem x{x} slik at d{d} blir lengst mulig.

Hvor lang er d for denne verdien av x ?

 

 

Oppgave 4 (8 poeng)

  Funksjonen f{f } er gitt ved

f(x)=2x36x2+5x{f(x)=2x^3 - 6x^2 + 5x}

a) Bruk graftegner til å tegne grafen til f{f}.

Grafen tilf{ f} har tre tangenter som går gjennom punktetA(4,3){ A(4, 3)} .

b) Forklar at x-koordinaten til tangeringspunktene må være løsning av likningen

f(x)3x4=f(x){{\frac{f(x)-3}{x-4}} = f'(x)}

c) Bruk CAS til å løse denne likningen. Bestem likningen til hver av tangentene.

La P(a,b){P(a, b)} være et punkt i planet.

d) Hva er det maksimale antallet tangenter grafen til f{f }kan ha som går gjennom P{P }?

Gratis Prøvesmak
Superteknikker
En til en veiledning
R1
 - Kapittelinndeling: Aschehoug R1 (oppdatert læreplan)
 - Potenser og logaritmer
 - Logaritmer
×
03:46
Teori 1
Tierlogaritmer. Definisjonen.

r1_2436
×
02:50
Teori 2
Vi bruker logaritmedefinisjonen til å regne ut noen logaritmer.

r1_2438
03:28
Teori 3
Tallet e - Eulers tall.

r1_2648
03:40
Teori 4
ex    og    lnxe^x\;\;og\;\;ln x   - den naturlige logaritmen.

r1_2650
08:07
Teori 5
Vi finner tierlogaritmer med en hjemmelagd python-kode - basert på definisjonen av logaritme.
04:32
Oppgave 1
Du får oppgitt at  log50,699log {5} \approx 0,699  og  log60,778log {6} \approx 0,778.
Bruk dette til å regne ut tilnærmingsverdier for
   1) log 30  2) log 36  3) log 50 og 4) log 2 UTEN kalkulator.
Skjul video ▼
Vis video ▲
Selvtester og oppgaver for mengdetrening
10 sekunders quiz
Eksamensoppgaver
×
Hva studeres i denne videoen?
Ti-logaritmer
Lever svar
Brøkregning
Lever svar
Geometri
Lever svar
00:00
Hva beskriver en logaritme?
En eksponent
Lever svar
En addisjon
Lever svar
En subtraksjon
Lever svar
00:12
Hva forteller logaritmen oss?
Hvilken eksponent som gir tallet
Lever svar
Hvor stort tallet er
Lever svar
Hvor mange ganger vi adderer tall
Lever svar
00:27
Hva betyr '=' i en ligning?
At to uttrykk har samme verdi
Lever svar
At ett tall er større enn et annet
Lever svar
At vi gjetter en verdi
Lever svar
00:40
Hva gjør en eksponent?
Angir hvor mange ganger basen multipliseres med seg selv
Lever svar
Legger tallene sammen
Lever svar
Deler tallene
Lever svar
00:42
Hva betyr en negativ eksponent?
At tallet er en brøkdel av basen
Lever svar
At tallet blir større
Lever svar
At vi ikke kan regne det ut
Lever svar
00:51
Hva er en kvadratrot?
Et tall som ganget med seg selv gir originaltallet
Lever svar
Et tall som legges til seg selv
Lever svar
Et tall som subtraheres fra basen
Lever svar
01:07
Hva kreves for å finne en logaritme?
Å vite eksponenten til basen
Lever svar
Å trekke fra basen
Lever svar
Å dele tallet på basen
Lever svar
01:22
Hva er basen i en ti-logaritme?
10
Lever svar
2
Lever svar
1
Lever svar
01:32
Hva kalles løsningen på en ligning?
Svaret
Lever svar
Gjetningen
Lever svar
Feilmarginen
Lever svar
01:39
Hvilke tall kan vi ta logaritmen av?
Positive tall
Lever svar
Negative tall
Lever svar
Alle tall
Lever svar
01:43
Hva betyr en brøk som eksponent?
En rot av tallet
Lever svar
En sum av tallene
Lever svar
En differanse av tallene
Lever svar
01:51
Hva gjør en større eksponent med tallet (basen > 1)?
Tallet blir større
Lever svar
Tallet blir mindre
Lever svar
Tallet endres ikke
Lever svar
01:56
Hva er fem i uttrykket 10^5?
Eksponenten
Lever svar
Basen
Lever svar
Logaritmen
Lever svar
02:03
Hva kalles tallet vi opphøyer basen i?
Eksponent
Lever svar
Faktor
Lever svar
Summand
Lever svar
02:12
Kan vi ta logaritmen av et negativt tall?
Nei
Lever svar
Ja
Lever svar
Bare noen ganger
Lever svar
02:22
Er logaritmen til et negativt tall definert?
Nei
Lever svar
Ja
Lever svar
Kun i spesielle tilfeller
Lever svar
02:29
Hva skjer på en kalkulator hvis vi tar log av et negativt tall?
Feilmelding
Lever svar
Riktig svar
Lever svar
Et gyldig tall
Lever svar
02:39
Hva kalles logaritmer med base 10?
Naturlige logaritmer
Lever svar
Tierlogaritmer
Lever svar
Logaritmer med base e
Lever svar
00:00
Hvilken funksjon danner grunnlaget for tierlogaritmen?
e opphøyd i x
Lever svar
10 opphøyd i x
Lever svar
x opphøyd i 10
Lever svar
00:08
Er 10 opphøyd i x alltid positiv?
Ja
Lever svar
Nei
Lever svar
Bare når x er positiv
Lever svar
01:00
Hva er 10 opphøyd i minus en?
10
Lever svar
0,1
Lever svar
0
Lever svar
01:02
Hva er 10 opphøyd i null?
1
Lever svar
0
Lever svar
10
Lever svar
01:09
Hva er et hvert tall opphøyd i null?
1
Lever svar
0
Lever svar
-1
Lever svar
01:14
Hva er 10 opphøyd i en halv?
Kvadratroten av 10
Lever svar
10
Lever svar
1/10
Lever svar
01:32
Er kvadratroten av 10 litt over 3?
Ja
Lever svar
Nei
Lever svar
Den er nøyaktig 3
Lever svar
01:52
Er grafen til 10 opphøyd i x stigende?
Ja
Lever svar
Nei
Lever svar
Den er konstant
Lever svar
01:59
Hva uttrykker en logaritme?
En eksponent
Lever svar
En divisor
Lever svar
En rot
Lever svar
02:04
Hva kalles logaritmen til 5?
logg 5
Lever svar
5
Lever svar
ln 5
Lever svar
02:09
Hva heter tallet man får ved å ta logg av 5?
Logaritmen til 5
Lever svar
Logaritmen til 10
Lever svar
Logaritmen til -5
Lever svar
02:41
Hva angir logaritmen til et tall?
Eksponenten til 10
Lever svar
Faktoren vi må dele med
Lever svar
Roten av tallet
Lever svar
02:45
Hva får vi hvis vi tar 10 opphøyd i logg(5)?
10
Lever svar
5
Lever svar
1
Lever svar
02:58
Kan vi ta logaritmen av et negativt tall?
Nei
Lever svar
Ja
Lever svar
Bare av -1
Lever svar
03:06
Hva er 10 opphøyd i logg(p)?
p
Lever svar
1
Lever svar
10
Lever svar
03:32
Må p være positiv for å ta logg(p)?
Ja
Lever svar
Nei
Lever svar
Bare hvis p er heltall
Lever svar
03:39
Introduseres et tall i starten?
Nei
Lever svar
Ja
Lever svar
Bare et ord
Lever svar
00:00
Heter tallet e?
Ja
Lever svar
Nei
Lever svar
Kanskje
Lever svar
00:04
Er bokstaven liten e?
Ja
Lever svar
Nei
Lever svar
Usikker
Lever svar
00:08
Kalles tallet for Eulers tall?
Ja
Lever svar
Nei
Lever svar
Bare av og til
Lever svar
00:10
Er e definert som en grenseverdi?
Ja
Lever svar
Nei
Lever svar
Kun i noen tilfeller
Lever svar
00:28
Har e uendelig mange desimaler?
Ja
Lever svar
Nei
Lever svar
Bare et fåtall
Lever svar
00:44
Er e irrasjonalt?
Ja
Lever svar
Nei
Lever svar
Vet ikke
Lever svar
01:31
Er pi også irrasjonalt?
Ja
Lever svar
Nei
Lever svar
Kun rundt 3
Lever svar
01:37
Er pi selve tallet?
Ja
Lever svar
Nei, bare en tilnærming
Lever svar
Det er ikke et tall
Lever svar
01:47
Er pi knyttet til sirkler?
Ja
Lever svar
Nei
Lever svar
Kun til trekanter
Lever svar
01:56
Er kvadratroten av to irrasjonalt?
Ja
Lever svar
Nei
Lever svar
Vet ikke
Lever svar
02:01
Blir e nevnt igjen her?
Ja
Lever svar
Nei
Lever svar
Bare pi
Lever svar
02:06
Finnes det en funksjon kalt e opphøyd i x?
Ja
Lever svar
Nei
Lever svar
Bare ln x
Lever svar
02:08
Kan man huske e med assosiasjoner?
Ja
Lever svar
Nei
Lever svar
Bare med tall
Lever svar
02:38
Blir vinkler nevnt som en huskeregel?
Ja
Lever svar
Nei
Lever svar
Kun lengder
Lever svar
03:12
Må man huske disse assosiasjonene?
Nei
Lever svar
Ja
Lever svar
Bare for eksperter
Lever svar
03:17
Hvilket tall dreier videoen seg om?
e
Lever svar
pi
Lever svar
2
Lever svar
03:24
Er e opphøyd i x en eksponentialfunksjon?
Ja
Lever svar
Nei
Lever svar
Vet ikke
Lever svar
00:01
Hva kalles e opphøyd i x?
Naturlig logaritmefunksjon
Lever svar
Naturlig eksponentialfunksjon
Lever svar
Lineær funksjon
Lever svar
00:18
Har e opphøyd i x e som grunntall?
Ja
Lever svar
Nei
Lever svar
Usikker
Lever svar
00:30
Er e opphøyd i x en funksjon?
Ja
Lever svar
Nei
Lever svar
Vet ikke
Lever svar
00:44
Øker verdien av e opphøyd i x når x øker?
Ja
Lever svar
Nei
Lever svar
Bare av og til
Lever svar
00:47
Blir e opphøyd i x større fra x=1 til x=2?
Ja
Lever svar
Nei
Lever svar
Den halveres
Lever svar
00:52
Er e opphøyd i x en typisk eksponentialfunksjon?
Ja
Lever svar
Nei
Lever svar
Usikker
Lever svar
01:04
Er ln en logaritmefunksjon?
Ja
Lever svar
Nei
Lever svar
En polynomfunksjon
Lever svar
01:09
Må ln brukes på positive tall?
Ja
Lever svar
Nei
Lever svar
På alle tall
Lever svar
01:21
Beskriver en logaritme en eksponent?
Ja
Lever svar
Nei
Lever svar
Vet ikke
Lever svar
01:46
Er logaritmen av p eksponenten som gir p fra e?
Ja
Lever svar
Nei
Lever svar
Ingen sammenheng
Lever svar
01:50
Gjelder e^(ln(p)) = p?
Ja
Lever svar
Nei
Lever svar
Vet ikke
Lever svar
01:53
Er p bare et symbol for et positivt tall?
Ja
Lever svar
Nei
Lever svar
Vet ikke
Lever svar
02:01
Kan vi finne tilnærmingsverdier av ln(4) fra en graf?
Ja
Lever svar
Nei
Lever svar
Kun nøyaktige verdier
Lever svar
02:05
Er ln(4) eksponenten som gir 4 fra e?
Ja
Lever svar
Nei
Lever svar
Avhenger av tallet
Lever svar
02:13
Er 4 et positivt tall?
Ja
Lever svar
Nei
Lever svar
Vet ikke
Lever svar
02:19
Må man ofte lese av verdier på en graf?
Ja
Lever svar
Nei
Lever svar
Aldri
Lever svar
02:27
Kan ln(4) være omtrent 1,38?
Ja
Lever svar
Nei
Lever svar
Nøyaktig 2
Lever svar
02:30
Er ln(4) en irrasjonell verdi?
Ja
Lever svar
Nei
Lever svar
Vet ikke
Lever svar
02:37
Er ln(e) = 1?
Ja
Lever svar
Nei
Lever svar
Vet ikke
Lever svar
02:45
Er ln(e) = 1?
Ja
Lever svar
Nei
Lever svar
Vet ikke
Lever svar
02:53
Er e omtrent 2,718?
Ja
Lever svar
Nei
Lever svar
10
Lever svar
02:55
Gir ln(e) = 1?
Ja
Lever svar
Nei
Lever svar
Vet ikke
Lever svar
02:59
Er e^0 = 1?
Ja
Lever svar
Nei
Lever svar
e
Lever svar
03:02
Er alle tall i nullte potens 1?
Ja
Lever svar
Nei
Lever svar
Kun e
Lever svar
03:10
Er eksponenten for å få 1 fra e lik 0?
Ja
Lever svar
Nei
Lever svar
Vet ikke
Lever svar
03:16
Gjelder e^0 = 1?
Ja
Lever svar
Nei
Lever svar
Alltid 0
Lever svar
03:20
Er ln(e²) = 2?
Ja
Lever svar
Nei
Lever svar
Vet ikke
Lever svar
03:25
logalog{a} er definert som:
Det tall man må opphøye 10 i for å få a
Lever svar
Det tall man må opphøye a i for å få 10
Lever svar
Det tall man må opphøye a i for å få 1
Lever svar
×
Tilbakestill oppgaven som uløst
×
Tilbakestill oppgaven som uløst
×
Tilbakestill oppgaven som uløst
log1000\log {1000} er:
3
Lever svar
10
Lever svar
ca 17,34
Lever svar
×
Tilbakestill oppgaven som uløst
×
Tilbakestill oppgaven som uløst
×
Tilbakestill oppgaven som uløst
Hva er ikke riktig når det gjelder tallet e ?
Det er lik ca 2,718
Lever svar
ln e = 0
Lever svar
ln e = 1
Lever svar
×
Tilbakestill oppgaven som uløst
×
Tilbakestill oppgaven som uløst
×
Tilbakestill oppgaven som uløst
Hvordan defineres ln3ln 3 ?
Det tallet e må opphøyes i for at vi skal få 3
Lever svar
Det er lik e3e^3
Lever svar
Det tallet 3 må opphøyes i for at vi skal få e
Lever svar
×
Tilbakestill oppgaven som uløst
×
Tilbakestill oppgaven som uløst
×
Tilbakestill oppgaven som uløst
Hva går metoden for å finne logaritmen til et gitt tall a i spyder utpå?
Gjetter en løsning b og øker/minker løsningstallet til differansen mellom a og 10b10^{b} er "ubetydelig".
Lever svar
Importerer kommandoer fra pylab som gir hele løsningen.
Lever svar
Bruker regresjon for å se hvilken løsning b som er nærmest.
Lever svar
×
Tilbakestill oppgaven som uløst
×
Tilbakestill oppgaven som uløst
×
Tilbakestill oppgaven som uløst