×
VGS matematikk
1 - 2 - 3 klasse

Lær VGS matten fra A til Å
med de beste metodene

Enkelt å
holde fokus

Forstå det
vanskelige

Få god
oversikt

Øv på
riktig tema

Få hjelp når
du stopper opp

Anne-Lise Frivold Svendsen

Flott opplegg og undervisning😊

Karina Tellmann Marthinussen

Tusen takk!

Ruben Flatås

Gjorde unna R2 som privatist på et halvt år!! Mattevideo har gjort det mye lettere å fordøye et så tungt pensum på så kort tid. Tusen takk for hjelpa!!😊

Vilde Ågotnes

Bra undervisning!

Hamdi A Ahmed

Jeg er fornøyd med videone deres det har hjulpet meg til å bestå matten i både Vgs og Uni . Så takk😊

Halvard Balto

Meget bra!

Halil Ibrahim Keser

Tusen takk. Veldig flink lærer. Gode forklaringer.

Marte Forsberg

Helt topp :D

Jon Mills

Bra side.

Kirsti Beate Årsandøy

Kjempebra!😊

Mari Bertelsen

Bra side. Veldig gode forklaringer😊

Selma Voss

Tror dette kommer til å redde meg på noen prøver fremover. Takk! :D

Caja Magnussen

takk for hjelpen

Abdi Omar

Takk for læreren av denne siden. Det er utrolig en bra side, fikk meg mye. Tusen hjertelig takk

Olav Lunde Arneberg

Kan trygt anbefale Arne Hovland! Beste læreren jeg har hatt i løpet av drøyt 20 år med utdanning.

Daniel Gabrielsen

takk for denne siden :D min 1T mattelærer snakker så monotont og gjør matte så kjedelig at interessen svinner vekk og jeg sovner etter 5 minutter.

Kassi 17 år - har eksamen i R1 til våren.
Min lærer går litt for raskt gjennom r1 pensum, noe som gjør at jeg trenger repetisjon av de vanskeligste emnene...les mer
Liam 34 år - har eksamen i R2 til jul.
Jeg kjøpte medlemskap fordi jeg ønsket forklaring via video og tilgang på "lærer" hele døgnet. Mattevideo er...les mer
Oda 16 år - har eksamen i 1T til våren.
Jeg ble abonnement hos mattevideo fordi jeg slet med å forstå pensum i 1T. Jeg ønsket å prøve, for å se...les mer
Nicolai 21 år - har eksamen i R2 til sommeren.
Jeg ble medlem for å forbedre meg, og gå dypere inn i spesifikke temaer. Jeg går i 10. klasse og tar forsert løp...les mer
Daniel 15 år - har eksamen i 1t til våren.
Jeg ble medlem for å forbedre meg, og gå dypere inn i spesifikke temaer. Jeg går i 10. klasse og tar forsert løp...les mer
June 20 år - preppet til eksamen.
Jeg brukte mattevideo da jeg måtte ta opp igjen eksamen, selvlært. Min gamle lærer gjorde det veldig vanskelig å henge med...les mer
Velg ditt fag
R1 er et studieretningsfag på Vg2-nivå. R1 står for "Realfaglig matematikk".
Hele læreplan fra A til Å
Videoundervsining alle temaer
Korte og effektive selvtester
Vi gjennomgår eksamen
Organiser temaene etter ønsket lærebok
Kapittelinndeling: Aschehoug R1
×
Organiser innholdet etter din lærebok
Organiser videoer med ønskede ikoner
Organiser selvtester med ønskede ikoner
Potenser og logaritmer
, curr: r1, book: 1583
31:02
19:21
21:51
04:32
11:20
36:25
61:05
05:30
Grenseverdier og kontinuitet
, curr: r1, book: 1583
12:55
05:03
66:44
08:47
12:10
16:28
25:42
27:48
Derivasjon
, curr: r1, book: 1583
17:10
05:32
19:11
07:48
42:57
24:16
12:16
10:18
01:15
09:15
06:25
06:22
21:22
Bruk av derivasjon
, curr: r1, book: 1583
47:00
18:48
48:53
37:56
05:45
12:48
34:28
14:31
Omvendte funksjoner
, curr: r1, book: 1583
19:07
16:53
11:23
05:31
02:05
Vektorer
, curr: r1, book: 1583
21:22
21:01
22:08
16:38
11:28
10:39
49:26
10:50
25:46
66:25
Anvendelser og modeller
, curr: r1, book: 1583
30:23
06:51
28:34
08:00
45:19
24:16
12:15
Flere temaer
, curr: r1, book: 1583
36:53
42:44
Eksamenstid 5 timer Del 1 (Uten hjelpemidler) skal leveres etter 2 timer. Del 2 (Med hjelpemidler) skal leveres etter senest 5 timer.

Oppgave 1 (5 poeng)

  Deriver funksjonene

a) f(x)=2x35x+4f(x)=2x^3-5x+4

b) g(x)=x2exg(x)=x^2e^x

c) h(x)=x23h(x)=\sqrt{x^2-3}

   

Oppgave 2 (4 poeng)

  Skriv så enkelt som mulig

a) x23x29+1x+3+5x3{\frac{x^2-3}{x^2-9} + \frac{1}{x+3} + \frac{5}{x-3}}

b) 2ln(a3b2)    3ln(ba2)2 \cdot ln(a^{-3} \cdot b^{2}) \ \ - \ \ 3 \cdot ln(\frac{b}{a^2})

 

Oppgave 3 (4 poeng)

  Tre punkt A(1,6)A(-1,6), B(2,1)B(2,1) og C(4,4)C(4,4) er gitt.

a) Bestem AB\overrightarrow{AB} og AC\overrightarrow{AC}

  Et punkt DD er gitt slik at

b) Bestem koordinatene til DD

Oppgave 4 (6 poeng)

  Funksjonen P er gitt ved

P(x)=2x36x22x+6{P(x)=2x^3-6x^2-2x+6}

 
a) Begrunn at (1,0){(1,0)} er et vendepunkt på grafen til P{P}.
b) Faktoriser P(x){P(x)} i lineære faktorer.
c) Løs likningen

2e3x6e2x2ex+6=0{2e^{3x}-6e^{2x}-2e^x+6=0}

 

Oppgave 5 (6 poeng)

 

Hjørnene i en trekant er A(1,0){A(1,0)} , B(6,2){B(6,2)} og C(3,5){C(3,5)} . Midtpunktene på sidene i trekanten er D{D}, E{E} og F{F}. Se figuren.

a) Forklar at koordinatene til punktene D{D}, E{E} og F{F} er

D(92,72){D \big(\frac{9}{2},\frac{7}{2} \big)}, E(2,52){E \big(2, \frac{5}{2} \big)} og F(72,1){F \big(\frac{7}{2}, 1 \big)}

Skjæringspunktet mellom medianene i trekanten er T.

b) Forklar at vi kan skrive AT{\overrightarrow{AT}} på to måter:

AT=sAD    ,    s=R{\overrightarrow{AT} = s \cdot \overrightarrow{AD}} \ \ \ \ , \ \ \ \ s = \mathbb{R}

AT=AB+tBE    ,    t=R{\overrightarrow{AT} = \overrightarrow{AB} + t \cdot \overrightarrow{BE}} \ \ \ \ , \ \ \ \ t = \mathbb{R}

der s og t er reelle tall.

c) Bruk vektorlikningene i oppgave b) til å bestemme s og t. Bestem koordinatene til T.

Oppgave 6 (4 poeng)

  En fabrikk produserer lyspærer. Alle lyspærene blir kontrollert. I kontrollen blir 8,0 % av lyspærene forkastet. Nærmere undersøkelser viser at
  • 92,0 % av de forkastede lyspærene er defekte
  • 2,0 % av de godkjente lyspærene er defekte
a) Vis at sannsynligheten er 9,2 % for at en tilfeldig produsert lyspære er defekt.
b) Bruk Bayes' setning til å bestemme sannsynligheten for at en defekt lyspære blir forkastet i kontrollen.    

Oppgave 7 (7 poeng)

En rettvinklet ΔABC\Delta{ABC} der C=90o\angle{C} = 90^{o} er gitt. Den innskrevne sirkelen har sentrum i S{S} og radius r{r}. Sirkelen tangerer trekanten i punktene D{D}, E{E} og F{F}. Vi setter AC=b{AC = b}, BC=a{BC = a} og AB=c{ AB = c}. Du får oppgitt at BF=BE{BF = BE} og AD=AE{AD = AE}

a) Bruk figuren til å forklare at a=BF+r{a = BF +r} og b=AD+r{b = AD +r}

Av figuren ser vi dessuten at c=AE+BE{c = AE + BE}

b) Vis at a+bc=2r{a + b - c = 2r}

c) Forklare at vi kan skrive arealet T av trekanten på to måter:

T=12ab{T = \frac{1}{2} \cdot a \cdot b} og T=12r(a+b+c){T = \frac{1}{2} \cdot r \cdot (a+b+c)}

d) Bruk resultatene du fant i oppgavene b) og c) til å utlede Pytagoras' setning.

DEL 2 - Med hjelpemidler

Oppgave 1 (6 poeng)

  I en kortstokk er det 52 kort. Kortene er fordelt på de fire fargene hjerter, ruter, spar og kløver. Hver farge har 13 kort fordelt på verdiene 2 til 10, knekt, dame, konge og ess. Tenk deg at du skal trekke tilfeldig fem kort fra kortstokken.

a) Bestem sannsynligheten for at du kommer til å trekke nøyaktig tre kort med verdi 10.

b) Bestem sannsynligheten for at du kommer til å trekke nøyaktig tre kort med samme verdi.

c) Bestem sannsynligheten for at alle kortene du kommer til å trekke, har samme farge.

Figur 1: Ett mulig utfall i oppgave a) Figur 2: Ett mulig utfall i oppgave b) Figur 3: Ett mulig utfall i oppgave c)  

Oppgave 2 (6 poeng)

Posisjonsvektoren til en partikkel er gitt ved

r(t)=[t21,t3t]{\overrightarrow{r}(t)= \left[ t^2-1,t^3-t \right] }

a) Tegn grafen til r{\overrightarrow{r}} når t[32,32]t \in \left[ -\frac{3}{2}, \frac{3}{2} \right].
b) Bestem fertsvektoren v(t){\overrightarrow{v}}(t) og akselerasjonsvektoren a(t){\overrightarrow{a}(t)}.
c) Bruk CAS til å bestemme den minste banefarten til partikkelen.

Oppgave 3 (4 poeng)

En stige på 7,0 m er stilt opp langs en vegg. Stigen danner sammen med veggen og bakken en rettvinkler ΔABC{\Delta{ABC}}. Se figuren. Vi setterAC=x{ AC = x}. Den korteste avstanden fra C{C } til stigen er d{d} meter.

a) Vis at d=x49x27d = {\frac{x \sqrt{49-x^2}}{7} }

b) Bestem x{x} slik at d{d} blir lengst mulig.

Hvor lang er d for denne verdien av x ?

 

 

Oppgave 4 (8 poeng)

  Funksjonen f{f } er gitt ved

f(x)=2x36x2+5x{f(x)=2x^3 - 6x^2 + 5x}

a) Bruk graftegner til å tegne grafen til f{f}.

Grafen tilf{ f} har tre tangenter som går gjennom punktetA(4,3){ A(4, 3)} .

b) Forklar at x-koordinaten til tangeringspunktene må være løsning av likningen

f(x)3x4=f(x){{\frac{f(x)-3}{x-4}} = f'(x)}

c) Bruk CAS til å løse denne likningen. Bestem likningen til hver av tangentene.

La P(a,b){P(a, b)} være et punkt i planet.

d) Hva er det maksimale antallet tangenter grafen til f{f }kan ha som går gjennom P{P }?

Gratis Prøvesmak
Superteknikker
En til en veiledning
R1
 - Kapittelinndeling: Aschehoug R1 (oppdatert læreplan)
 - Derivasjon
 - Produktregelen og brøkregelen
×
02:36
Teori 1
Derivasjon av produkt.

r1_2606
×
03:46
Teori 2
Derivasjon av brøk.

r1_2609
03:14
Oppgave 1
Finn f''(x) når  f(x)=(3x2)xf(x)=(3x-2) \sqrt{x} .
08:19
Oppgave 2
Derivér funksjonen f(x)=(3x2+x)x22xf(x) = (3x^2+x) \sqrt{x^2-2x}
05:20
Oppgave 3
Derivér funksjonen f(x)=xx2+1f(x) = { \frac{x}{\sqrt { x^2+1}} } .
02:01
Oppgave 4
Deriver funksjonen  f(x)=ex2f(x)={e}^{x^2}
02:28
Oppgave 5
Deriver funksjonen  f(x)=x2exf(x)={x^2}\cdot {e^{-x}}
Skjul video ▼
Vis video ▲
Selvtester og oppgaver for mengdetrening
10 sekunders quiz
Eksamensoppgaver
×
Må man følge en spesiell regel ved derivasjon av brøkuttrykk?
Nei, man kan gjette
Lever svar
Ja, det finnes en egen regel
Lever svar
Bare hvis nevneren er konstant
Lever svar
00:00
Kan man ignorere reglene ved derivasjon?
Ja, alltid
Lever svar
Nei, man må bruke dem
Lever svar
Kun når uttrykket er enkelt
Lever svar
00:13
Bør man bare derivere telleren og ignorere nevneren?
Nei, man må følge hele regelen
Lever svar
Ja, det er nok
Lever svar
Bare i spesielle tilfeller
Lever svar
00:17
Er derivasjon av brøker alltid enkel?
Ja, alltid
Lever svar
Nei, det krever regler
Lever svar
Bare hvis telleren er konstant
Lever svar
00:24
Hvilken struktur har regelen for derivasjon av en brøk?
Den inneholder et minus-tegn og nevneren i kvadrat
Lever svar
Den er kun summen av teller og nevner
Lever svar
Den krever ingen spesielle elementer
Lever svar
00:30
Hva skiller brøkregelen fra produktregelen?
Den har et minus i stedet for pluss
Lever svar
Ingen forskjell
Lever svar
Den bruker ikke nevner
Lever svar
00:48
Hva skjer med nevneren i regelen?
Den står i første potens
Lever svar
Den opphøyes i annen potens
Lever svar
Den fjernes helt
Lever svar
00:59
Hvor stammer derivasjonsreglene fra?
Fra tilfeldige antakelser
Lever svar
Fra definisjonen av den deriverte
Lever svar
Fra en formelbok uten bevis
Lever svar
01:04
Er det nødvendig å kunne bruke regelen uten å bevise den?
Ja, man må kunne bruke den
Lever svar
Nei, man må alltid bevise den
Lever svar
Kun hvis lærer krever det
Lever svar
01:25
Hva kalles den deriverte av telleren?
u-derivert
Lever svar
v-derivert
Lever svar
x-derivert
Lever svar
01:46
Hva kalles den deriverte av nevneren?
u-derivert
Lever svar
v-derivert
Lever svar
z-derivert
Lever svar
01:50
Må man alltid skrive ut alle steg eksplisitt?
Ja, alltid
Lever svar
Nei, det er ikke nødvendig
Lever svar
Kun i spesielle tilfeller
Lever svar
01:57
Kan man hoppe over noen mellomsteg?
Ja, det kan man
Lever svar
Nei, aldri
Lever svar
Bare hvis oppgaven sier det
Lever svar
02:01
Må man fortsette etter å ha funnet u- og v-derivert?
Ja, for å anvende regelen
Lever svar
Nei, man er ferdig da
Lever svar
Bare hvis resultatet er feil
Lever svar
02:06
Er det deriverte et nytt uttrykk?
Ja, et nytt uttrykk
Lever svar
Nei, det samme uttrykket
Lever svar
Bare om funksjonen er enkel
Lever svar
02:11
Må man først gange den deriverte telleren med uderivert nevner?
Ja, ifølge regelen
Lever svar
Nei, spiller ingen rolle
Lever svar
Bare hvis nevneren er konstant
Lever svar
02:15
Innebærer regelen også et motsatt ledd?
Ja, først én del, så motsatt
Lever svar
Nei, bare ett steg
Lever svar
Kun i sjeldne tilfeller
Lever svar
02:20
Må en del av funksjonen forbli uendret i et av stegene?
Ja, det må den
Lever svar
Nei, begge deler må endres
Lever svar
Bare ved lineære funksjoner
Lever svar
02:23
Skal man også gange med den deriverte av nevneren?
Ja, ifølge regelen
Lever svar
Nei, aldri
Lever svar
Kun hvis telleren er konstant
Lever svar
02:27
Må resultatet deles på nevneren i annen?
Ja, alltid
Lever svar
Nei, aldri
Lever svar
Bare hvis nevneren er en konstant
Lever svar
02:33
Er det vanlig å forenkle resultatet?
Ja, man forenkler vanligvis
Lever svar
Nei, aldri
Lever svar
Bare i kompliserte tilfeller
Lever svar
02:38
Krever resultatet ofte algebraisk forenkling?
Ja, ofte
Lever svar
Nei, aldri
Lever svar
Bare i spesielle tilfeller
Lever svar
02:55
Kan telleren være et polynom?
Ja, det kan den være
Lever svar
Nei, aldri
Lever svar
Bare hvis nevneren er konstant
Lever svar
03:04
Må man av og til løse opp parenteser?
Ja, for å forenkle
Lever svar
Nei, aldri
Lever svar
Bare i avanserte tilfeller
Lever svar
03:08
Endres fortegn når man løser opp en parentes med minus foran?
Ja, fortegn endres
Lever svar
Nei, fortegn er uendret
Lever svar
Bare hvis tallene er negative
Lever svar
03:20
Blir uttrykket enklere etter opprydding?
Ja, gjerne
Lever svar
Nei, det blir mer komplisert
Lever svar
Det forblir alltid likt
Lever svar
03:26
Kan sluttresultatet bli et enkelt rasjonalt uttrykk?
Ja, det kan det
Lever svar
Nei, aldri
Lever svar
Bare i spesielle tilfeller
Lever svar
03:29
Er dette et typisk sluttresultat?
Ja, ofte
Lever svar
Nei, aldri
Lever svar
Bare i teoretiske eksempler
Lever svar
03:35
Er hovedpoenget å bruke regelen riktig?
Ja, det er det viktige
Lever svar
Nei, poenget er uviktig
Lever svar
Bare hvis nevneren ikke er 1
Lever svar
03:38
Hva er kjernen i arbeidet med derivasjon av brøker?
Å bruke regelen korrekt
Lever svar
Å gjette svaret
Lever svar
Å ignorere nevneren
Lever svar
03:42
Hvilken regel brukes for å derivere et produkt?
Produktregelen
Lever svar
Kjerneregelen
Lever svar
Ingen regel
Lever svar
00:00
Må begge funksjoner tas hensyn til ved derivasjon av et produkt?
Ja
Lever svar
Nei
Lever svar
Vet ikke
Lever svar
00:11
Hva er formen til produktregelen?
u'·v + u·v'
Lever svar
u + v
Lever svar
u'·v'
Lever svar
00:25
Krever produktregelen at man bruker både avledet og ikke-avledet funksjon?
Ja
Lever svar
Nei
Lever svar
Vet ikke
Lever svar
00:42
Hvilke symboler brukes ofte for funksjonene i et produkt?
u og v
Lever svar
a og b
Lever svar
x og y
Lever svar
00:51
Må funksjonene alltid omtales som u og v?
Ja, alltid
Lever svar
Nei, ikke nødvendig
Lever svar
Bare i noen tilfeller
Lever svar
00:57
Hva gjør vi med u' i produktregelen?
Multipliserer med v
Lever svar
Adderer med v
Lever svar
Ignorerer v
Lever svar
01:18
Skal den andre faktoren deriveres samtidig som den første?
Nei
Lever svar
Ja
Lever svar
Bare om nødvendig
Lever svar
01:28
Inngår et plusstegn i produktregelen?
Ja
Lever svar
Nei
Lever svar
Vet ikke
Lever svar
01:34
Benytter produktregelen begge funksjonene u og v?
Ja
Lever svar
Nei
Lever svar
Noen ganger
Lever svar
01:37
Trenger vi både u' og v' for produktregelen?
Ja
Lever svar
Nei
Lever svar
Vet ikke
Lever svar
01:42
Må begge funksjoner deriveres i løpet av prosessen?
Ja
Lever svar
Nei
Lever svar
Bare en
Lever svar
01:46
Kan resultatet av produktregelen bestå av flere ledd?
Ja
Lever svar
Nei
Lever svar
Bare to
Lever svar
01:53
Involverer produktregelen ofte algebraisk forenkling?
Ja
Lever svar
Nei
Lever svar
Aldri
Lever svar
01:56
Kan enkelte termer forsvinne ved forenkling?
Ja
Lever svar
Nei
Lever svar
Vet ikke
Lever svar
02:01
Er det vanlig å rydde opp i uttrykket etter bruk av produktregelen?
Ja
Lever svar
Nei
Lever svar
Vet ikke
Lever svar
02:04
Er forenkling hovedpoenget med produktregelen?
Nei
Lever svar
Ja
Lever svar
Vet ikke
Lever svar
02:11
Er produktregelen primært en derivasjonsmetode?
Ja
Lever svar
Nei
Lever svar
Kanskje
Lever svar
02:16
Viser produktregelen hvordan man deriverer et produkt av to funksjoner?
Ja
Lever svar
Nei
Lever svar
Noen ganger
Lever svar
02:22
Den deriverte til x2+1x1\frac{x^2+1}{x-1} = ?
2x1\frac{2x }{ 1 }
Lever svar
2x(x1)(x2+1)(x1)2\frac{2x(x-1) - (x^2+1)}{(x-1)^2 }
Lever svar
Funksjonen er ikke kontinuerlig i x = 1, den er derfor ikke deriverbar.
Lever svar
×
Tilbakestill oppgaven som uløst
×
Tilbakestill oppgaven som uløst
×
Tilbakestill oppgaven som uløst
Den deriverte til 3x2(x22x)3x^2 (x^2-2x) = ?
6x(2x2)6x (2x-2)
Lever svar
6x(x22x)+3x2(2x2)6x (x^2-2x) + 3x^2(2x-2)
Lever svar
noe annet enn de to første alternativene, vi må nemlig gange ut parentesene først.
Lever svar
×
Tilbakestill oppgaven som uløst
×
Tilbakestill oppgaven som uløst
×
Tilbakestill oppgaven som uløst