×
VGS matematikk
1 - 2 - 3 klasse

Lær VGS matten fra A til Å
med de beste metodene

Enkelt å
holde fokus

Forstå det
vanskelige

Få god
oversikt

Øv på
riktig tema

Få hjelp når
du stopper opp

Anne-Lise Frivold Svendsen

Flott opplegg og undervisning😊

Karina Tellmann Marthinussen

Tusen takk!

Ruben Flatås

Gjorde unna R2 som privatist på et halvt år!! Mattevideo har gjort det mye lettere å fordøye et så tungt pensum på så kort tid. Tusen takk for hjelpa!!😊

Vilde Ågotnes

Bra undervisning!

Hamdi A Ahmed

Jeg er fornøyd med videone deres det har hjulpet meg til å bestå matten i både Vgs og Uni . Så takk😊

Halvard Balto

Meget bra!

Halil Ibrahim Keser

Tusen takk. Veldig flink lærer. Gode forklaringer.

Marte Forsberg

Helt topp :D

Jon Mills

Bra side.

Kirsti Beate Årsandøy

Kjempebra!😊

Mari Bertelsen

Bra side. Veldig gode forklaringer😊

Selma Voss

Tror dette kommer til å redde meg på noen prøver fremover. Takk! :D

Caja Magnussen

takk for hjelpen

Abdi Omar

Takk for læreren av denne siden. Det er utrolig en bra side, fikk meg mye. Tusen hjertelig takk

Olav Lunde Arneberg

Kan trygt anbefale Arne Hovland! Beste læreren jeg har hatt i løpet av drøyt 20 år med utdanning.

Daniel Gabrielsen

takk for denne siden :D min 1T mattelærer snakker så monotont og gjør matte så kjedelig at interessen svinner vekk og jeg sovner etter 5 minutter.

Kassi 17 år - har eksamen i R1 til våren.
Min lærer går litt for raskt gjennom r1 pensum, noe som gjør at jeg trenger repetisjon av de vanskeligste emnene...les mer
Liam 34 år - har eksamen i R2 til jul.
Jeg kjøpte medlemskap fordi jeg ønsket forklaring via video og tilgang på "lærer" hele døgnet. Mattevideo er...les mer
Oda 16 år - har eksamen i 1T til våren.
Jeg ble abonnement hos mattevideo fordi jeg slet med å forstå pensum i 1T. Jeg ønsket å prøve, for å se...les mer
Nicolai 21 år - har eksamen i R2 til sommeren.
Jeg ble medlem for å forbedre meg, og gå dypere inn i spesifikke temaer. Jeg går i 10. klasse og tar forsert løp...les mer
Daniel 15 år - har eksamen i 1t til våren.
Jeg ble medlem for å forbedre meg, og gå dypere inn i spesifikke temaer. Jeg går i 10. klasse og tar forsert løp...les mer
June 20 år - preppet til eksamen.
Jeg brukte mattevideo da jeg måtte ta opp igjen eksamen, selvlært. Min gamle lærer gjorde det veldig vanskelig å henge med...les mer
Velg ditt fag
S1 er et studieretningsfag på Vg2-nivå. S1 står for "Samfunnsfaglig matematikk".
Hele læreplan fra A til Å
Videoundervsining alle temaer
Korte og effektive selvtester
Vi gjennomgår eksamen
Organiser temaene etter ønsket lærebok
Kapittelinndeling: Mattevideo.no S1
×
Organiser innholdet etter din lærebok
Organiser videoer med ønskede ikoner
Organiser selvtester med ønskede ikoner
Regning og algebra
, curr: s1, book: 665
11:03
18:32
06:08
10:46
10:38
23:49
17:41
14:20
12:27
17:07
17:20
15:51
14:13
21:05
10:28
16:45
27:26
12:31
12:52
Likninger og ulikheter
, curr: s1, book: 665
24:31
20:52
17:04
27:29
08:55
12:55
03:44
05:30
36:41
Sannsynlighetsregning
, curr: s1, book: 665
16:30
14:09
02:14
05:00
08:37
09:48
10:18
19:08
12:11
30:26
15:52
16:59
06:34
Funksjoner og grafer
, curr: s1, book: 665
13:10
29:30
21:40
06:22
06:09
09:39
09:41
28:06
22:42
26:06
08:45
23:13
Å derivere
, curr: s1, book: 665
13:12
05:59
05:15
07:46
09:27
11:51
10:46
05:59
05:32
03:45
20:42
19:18
Lineær optimering
, curr: s1, book: 665
27:08
17:22
33:15
44:32
Eksamenstid 5 timer Del 1 (Uten hjelpemidler) skal leveres etter 2 timer. Del 2 (Med hjelpemidler) skal leveres etter senest 5 timer.
DEL 1 - Uten hjelpemidler

Oppgave 1 (5 poeng)

  Løs likningene

a) 2x25x+1=x32x^2 - 5x + 1 = x - 3

 

b) 2lg(x+7)=42 \cdot \lg{(x+7)} = 4

 

c) 323x+2=12263 \cdot 2^{3x + 2} = 12 \cdot 2^6

   

Oppgave 2 (2 poeng)

 
Løs likningssystemet

[x2+3y=73xy=1]\begin{bmatrix} x^2 + 3y = 7 \\ 3x - y = 1 \end{bmatrix}

Oppgave 3 (6 poeng)

  Skriv så enkelt som mulig

a) (2x3)22x(2x6)(2x-3)^2 -2x(2x-6)

 

b) lg2a+lg4a+lg8alg16a\lg{2a} + \lg{4a} + \lg{8a} - \lg{16a}

 

c) 1a+1babab\frac{1}{a} + \frac{1}{b} - \frac{a-b}{ab}

Oppgave 4 (2 poeng)

 
Løs ulikheten

x23x+20x^2 - 3x + 2 \geq 0

Oppgave 5 (5 poeng)

 

a) Skriv ned de åtte første radene i Pascals talltrekant.

I en eske ligger det 3 røde og 4 blå kuler. Tenk deg at du skal trekke tilfeldig 3 kuler uten tilbakelegging.  

b) Bestem sannsynligheten for at du trekker tre blå kuler.

 

c) Bestem sannsynligheten for at det er både røde og blå kuler blant de tre kulene du trekker.

 

Oppgave 6 (2 poeng)

 
Skraver området som er avgrenset av ulikhetene nedenfor, i et koordinatsystem.

x0x \geq 0

y8y \leq 8

x+y10x + y \leq 10

3x2y23x - 2y \leq -2

Oppgave 7 (4 poeng)

  Funksjonen f er gitt ved

f(x)=2x1x+2 , x2f(x) = \frac{2x - 1}{x + 2} \ , \ x \neq 2

 
a) Lag en skisse av grafen til f .  
b) Løs likningen f(x)=x2f(x) = x - 2  

Oppgave 8 (7 poeng)

  Funksjonen g er gitt ved

g(x)=2x3+3x212xg(x) = 2x^3+3x^2-12x

a) Bestem g(x)g'(x)  
b) Bestem toppunktet og bunnpunktet på grafen til g.  
c) Bestem den gjennomsnittlige vekstfarten til g i intervallet [0, 2].  
d) Bestem de punktene på grafen der den momentane vekstfarten er 24.  

Oppgave 9 (3 poeng)

  Nedenfor ser du fortegnslinjen til f(x)f'(x), for en funksjon f.

 
a) Bruk fortegnslinjen til å bestemme hvor grafen til f stiger, og hvor den synker.  
b) Lag en skisse som viser hvordan grafen til f kan se ut.
DEL 2 - Med hjelpemidler  

Oppgave 1 (3 poeng)

  Einar er fiskehandler. Han selger torsk og sei. En dag solgte han 110 kg torsk og 200 kg sei. Han fikk 6795 kroner. Dagen etter solgte han 150 kg torsk og 230 kg sei. For dette fikk han 8390 kroner.
Sett opp et likningssystem, og bruk CAS til å bestemme hvilken pris Einar fikk per kilogram for torsken, og hvilken pris han fikk per kilogram for seien.  

Oppgave 2 (6 poeng)

  Et flyselskap har en flyrute mellom Oslo og Bergen. Flyene som brukes, har plass til 116 passasjerer. Sannsynligheten for at en passasjer som har kjøpt billett, ikke møter til flyavgang, er 6 %. Vi lar X være antall passasjerer som møter til en tilfeldig valgt flyavgang.

a) Hva må vi forutsette for å kunne bruke en binomisk sannsynlighetsmodell i denne situasjonen?

I resten av denne oppgaven går vi ut fra at X er binomisk fordelt.

b) Til en flyavgang er det solgt 122 billetter. Bestem sannsynligheten for at alle som møter, får plass på flyet.

Flyselskapet ønsker at sannsynligheten skal være minst 95 % for at alle som møter, skal få plass på flyet.

c) Hvor mange billetter kan flyselskapet maksimalt selge da?

Oppgave 3 (7 poeng)

  Frode og Peter lager to typer fuglekasser. Type A er for meiser, og type B er for ugler. Frode lager delene til kassene, mens Peter setter dem sammen og maler dem.
  • Frode bruker 10 minutter på å lage delene til en kasse av type A og 30 minutter på å lage delene til en kasse av type B.
  • Peter bruker 20 minutter på å sette sammen og male en kasse av type A og 30 minutter på en kasse av type B.
  • I løpet av en uke kan Frode jobbe 15 timer.
  • I løpet av en uke kan Peter jobbe 20 timer.
De produserer x kasser av type A og y kasser av type B.

a) Forklar at x og y må ligge i området som er avgrenset av ulikhetene nedenfor:

x0,y0x \geq 0 , y \geq 0

x+3y90x + 3y \leq 90

2x+3y1202x + 3y \leq 120

 

b) Skraver dette området i et koordinatsystem.

Når de selger fuglekassene, har de en fortjeneste på 60 kroner for en kasse av type A og 150 kroner for en kasse av type B.

c) Hvor mange kasser bør de produsere av hver type for at fortjenesten skal bli størst mulig?

Etterspørselen etter fuglekasser av begge typer er veldig stor, så Frode sier han kan jobbe 3 timer ekstra en uke.

d) Hvor mange kasser bør de produsere av hver type denne uken dersom de vil ha størst mulig fortjeneste?

Oppgave 4 (8 poeng)

  Arne har sommerjobb som montør i en bedrift som produserer en bestemt type pumper. Han har lagt merke til at arbeidstempoet endrer seg i løpet av dagen. En dag teller han opp annenhver time hvor mange pumper han har montert så langt den dagen. Tabellen nedenfor viser resultatet

 

a) Bruk regresjon til å lage et tredjegradspolynom g som kan brukes som modell for hvor mange pumper Arne setter sammen i løpet av de x første timene på jobb en dag.

I resten av oppgaven lar vi funksjonen f gitt ved

f(x)=0,26x3+2,8x2+16x,0x9f(x)=-0,26x^3 + 2,8x^2 + 16x , 0 \leq x \leq 9

være en modell for antall pumper Arne klarer å montere i løpet av de x første timene på jobb en dag.

b) Bruk graftegner til å tegne grafen til f i et koordinatsystem.

Arne kan velge om han vil ha 9 kroner per pumpe han monterer, eller 190 kroner per time han jobber.

c) Hvor mange timer må han jobbe på én dag for at det skal lønne seg å velge betaling per montert pumpe?

d) Hvor mange timer må han jobbe én dag for at forskjellen på lønn per pumpe og lønn per time skal bli størst mulig?

 
Gratis Prøvesmak
Superteknikker
En til en veiledning
S1
 - Kapittelinndeling: Mattevideo.no S1 (gammel læreplan)
 - Regning og algebra
 - Logaritmeregler
×
06:36
Teori 1
Regneregler for logaritmer. Reglene er repetisjon fra 1T, men her får du også se bevisene for reglene. Beviser er en del av pakka i S-matte.

Logarimeregler2
×
03:28
Teori 2
Likningen ax=ba^x=b (som løses ved hjelp av en logaritmeregel).
06:41
Teori 3
En kamuflert andregradsligning.
04:32
Oppgave 1
Du får oppgitt at  log50,699log {5} \approx 0,699  og  log60,778log {6} \approx 0,778.
Bruk dette til å regne ut tilnærmingsverdier for
   1) log 30  2) log 36  3) log 50 og 4) log 2 UTEN kalkulator.
06:43
Oppgave 2
Regning med vekstfaktor: "Noe" vokser med 5 % hver dag. Hvor lang tid tar det før dette er blitt dobbelt så stort?
04:33
Oppgave 3
Noe minker med 5% hvert år, hvor lang tid tar det før dette er halvert?
06:28
Oppgave 4
Halveringstiden til en radioaktiv isotop er 45 dager. En jordprøve inneholder 20mg av isotpen. Hvor lang tid tar det før jordprøven inneholder 1mg av denne isotopen?
01:38
Oppgave 5
Regn ut  lg(a/b)+lg(ab)lga2lg (a/b) + lg (ab) - lg {a^2} .
03:32
Oppgave 6
Regn ut  2lga3+lga14a2 \cdot { lg \sqrt[3] a } + lg { \sqrt a} - {\frac{1}{4}} {a}.
Skjul video ▼
Vis video ▲
Selvtester og oppgaver for mengdetrening
10 sekunders quiz
Eksamensoppgaver
×
Hva er en logaritme?
En omvendt potensfunksjon
Lever svar
En slags geometrisk figur
Lever svar
Et tilfeldig tall
Lever svar
00:00
Hva betyr å bevise en matematisk regel?
Å gjette svaret
Lever svar
Å vise logisk at den alltid gjelder
Lever svar
Å tegne en figur
Lever svar
00:06
Hva gjør vi med logaritmen av et produkt?
Legger sammen logaritmene
Lever svar
Trekker fra logaritmene
Lever svar
Multipliserer logaritmene
Lever svar
00:19
Hvordan kan logaritmen av en brøk uttrykkes?
Som differansen av to logaritmer
Lever svar
Som summen av to logaritmer
Lever svar
Som produktet av to logaritmer
Lever svar
00:51
Hva er definisjonen av en logaritme?
Et tall som viser hvor mange ganger vi skal addere
Lever svar
Eksponenten man må opphøye ti i for å få tallet
Lever svar
En tilfeldig valgt konstant
Lever svar
01:07
Hva er nøkkelideen ved logaritmer?
At tall kan uttrykkes som ti i en viss potens
Lever svar
At alle tall er negative
Lever svar
At null er større enn én
Lever svar
01:31
Hvilke andre regler er viktige for bevis av logaritmeregler?
Potensregler
Lever svar
Måleenheter
Lever svar
Fargekoder
Lever svar
01:34
Hva viser den første logaritmeregelen?
At log(a^x) = x·log(a)
Lever svar
At log(a^x) = a
Lever svar
At log(a) forsvinner
Lever svar
01:43
Hva viser beviset for den første regelen?
At a^x kan skrives på to måter
Lever svar
At tall forsvinner ved logaritmer
Lever svar
At a alltid er større enn x
Lever svar
01:51
Hvordan kan hvert positivt tall uttrykkes?
Som 10 opphøyd i logaritmen til tallet
Lever svar
Som en sum av tilfeldige tall
Lever svar
Som et negativt tall
Lever svar
02:00
Hva får vi når vi tar 10 opphøyd i logaritmen til et tall?
Selve tallet
Lever svar
Alltid null
Lever svar
Alltid et negativt tall
Lever svar
02:15
Hvordan kan vi omskrive grunn­tallet a ved bruk av logaritmen?
Som 10^(log(a))
Lever svar
Som 2 ganger a
Lever svar
Som a minus 10
Lever svar
02:22
Hva er a i logaritmisk form?
10^(log(a))
Lever svar
2^(log(a))
Lever svar
log(a)^(10)
Lever svar
02:37
Hva gjør vi når en potens er opphøyd i en annen potens?
Ganger eksponentene
Lever svar
Legger eksponentene til hverandre
Lever svar
Trekker fra eksponentene
Lever svar
02:41
Hva er 2^3 opphøyd i 6 lik?
2^18
Lever svar
2^9
Lever svar
2^(3+6)=2^9
Lever svar
02:58
Hvor mye er tre ganger seks?
18
Lever svar
9
Lever svar
36
Lever svar
03:08
Hva gjør vi med eksponentene i en potens av en potens?
Multipliserer dem
Lever svar
Dividerer dem
Lever svar
Adderer grunntallene
Lever svar
03:14
Hva må tallene på begge sider av likhetstegnet være?
Like
Lever svar
Ulike
Lever svar
Ukjente
Lever svar
03:23
Hva må log(a^x) være lik?
x·log(a)
Lever svar
log(a+x)
Lever svar
1
Lever svar
03:27
Hva betyr det når vi har vist en regel?
At den er bevist
Lever svar
At den er gjettet
Lever svar
At den er antatt
Lever svar
03:48
Hva skjer med logaritmen av et produkt?
Den deles i en sum av logaritmer
Lever svar
Den forblir uendret
Lever svar
Den blir en differanse av logaritmer
Lever svar
03:50
Hva gjør vi med logaritmen til a*b?
Uttrykker den som 10 opphøyd i logaritmen
Lever svar
Gjør den negativ
Lever svar
Deler den i to deler
Lever svar
03:57
Hvordan kan vi behandle faktorer i et produkt?
Separat og så kombinere dem
Lever svar
Alltid sammen
Lever svar
Kun som en brøk
Lever svar
04:03
Hva kan vi gjøre med to logaritmer for et produkt?
Legge dem sammen
Lever svar
Trekke dem fra hverandre
Lever svar
Multiplisere dem
Lever svar
04:39
Hva må to uttrykk som representerer samme tall være?
Like
Lever svar
Ulike
Lever svar
Udefinerte
Lever svar
04:58
Hva kaller vi det når to former for samme tall samsvarer?
Et bevis
Lever svar
En antakelse
Lever svar
En gjetning
Lever svar
05:18
Gjelder en lignende regel for brøker som for produkter?
Ja, men med subtraksjon
Lever svar
Nei, ikke i det hele tatt
Lever svar
Bare i noen tilfeller
Lever svar
05:22
Hvordan kan vi betrakte en brøk?
Som en teller og en nevner hver for seg
Lever svar
Som ett udelt tall
Lever svar
Som et negativt tall
Lever svar
05:28
Hva gjør vi med eksponenter i teller og nevner?
Bruker divisjonsregelen
Lever svar
Legger dem sammen
Lever svar
Ser bort fra dem
Lever svar
06:02
Hvordan uttrykkes logaritmen av en brøk?
Som log(a) - log(b)
Lever svar
Som log(a) + log(b)
Lever svar
Som log(a)*log(b)
Lever svar
06:10
Hva kaller vi en fast matematisk sammenheng?
En regel
Lever svar
En gjetning
Lever svar
En tilfeldighet
Lever svar
06:21
Hva er en viktig del av matematikkfaget?
Å kunne bevise påstander
Lever svar
Å bare gjette
Lever svar
Å se bort fra regler
Lever svar
06:27
Hva er en ligning?
En likhet mellom to uttrykk
Lever svar
Et musikkstykke
Lever svar
En farge
Lever svar
00:00
Hva er en logaritme?
Et verktøy for å finne en ukjent eksponent
Lever svar
Et musikkinstrument
Lever svar
En frukt
Lever svar
00:07
Hva betyr opphøyd i x?
Gjentatt multiplikasjon
Lever svar
Gjentatt subtraksjon
Lever svar
Gjentatt addisjon av null
Lever svar
00:13
Hva skjer om vi gjør samme operasjon på begge sider av en ligning?
Likheten bevares
Lever svar
Den forsvinner
Lever svar
Den dobles
Lever svar
00:19
Hva kan vi gjøre med eksponenten i en logaritme?
Flytte den foran logaritmen
Lever svar
Slette den
Lever svar
Ignorere den
Lever svar
00:36
Hvordan tolker vi x ganger et tall?
Som vanlig multiplikasjon
Lever svar
Som en farge
Lever svar
Som en sang
Lever svar
00:53
Er 21 et naturlig tall?
Ja
Lever svar
Nei
Lever svar
Bare om søndager
Lever svar
01:01
Hvordan isolere x i en enkel ligning?
Dele med tallet foran x
Lever svar
Gjette svar
Lever svar
Tegne en sirkel
Lever svar
01:03
Hva oppnår vi ved å forenkle en ligning trinnvis?
Vi nærmer oss løsningen
Lever svar
Vi fjerner løsningen
Lever svar
Vi gjør det umulig
Lever svar
01:07
Kan ulike logaritmer forenkles ved direkte deling?
Nei, de er spesifikke tall
Lever svar
Ja, alltid
Lever svar
Bare hvis de er like
Lever svar
01:10
Hva brukes kalkulatoren til?
Finne numeriske verdier
Lever svar
Å danse
Lever svar
Lage musikk
Lever svar
01:53
Er logaritmer knyttet til bestemte tall?
Ja, hver er unik
Lever svar
Nei, de er like
Lever svar
De er alltid null
Lever svar
01:59
Hva kaller vi et omtrentlig tall?
En tilnærming
Lever svar
En presisjon
Lever svar
En illusjon
Lever svar
02:06
Hva betyr å runde av?
Justere til nærmeste verdi
Lever svar
Halvere tallet
Lever svar
Slette tallet
Lever svar
02:17
Hva betyr "opphøyd i andre"?
Tallet multipliseres med seg selv
Lever svar
Tallet deles på seg selv
Lever svar
Tallet trekkes fra seg selv
Lever svar
02:20
Hva betyr "opphøyd i tredje"?
Multiplisere tallet med seg selv to ganger
Lever svar
Legge tallet til seg selv
Lever svar
Dele tallet i tre like deler
Lever svar
02:33
Kan en positiv potens bli negativ?
Nei, resultatet blir aldri negativt
Lever svar
Ja, alltid
Lever svar
Bare hvis tallet er null
Lever svar
02:49
Kan vi ta logaritmen av et negativt tall?
Nei, det er ikke definert
Lever svar
Ja, i alle tilfeller
Lever svar
Kun med hemmelig formel
Lever svar
03:10
Ser denne ligningen vanlig ut?
Ja
Lever svar
Nei
Lever svar
Kanskje
Lever svar
00:00
Vises en ligning her?
Ja
Lever svar
Nei
Lever svar
Kanskje
Lever svar
00:08
Har ligningen et konstantledd?
Ja
Lever svar
Nei
Lever svar
Kanskje
Lever svar
00:11
Er dette en annen type ligning?
Ja
Lever svar
Nei, den er annerledes
Lever svar
Kanskje
Lever svar
00:16
Kan et ledd omskrives med potensregler?
Ja
Lever svar
Nei
Lever svar
Kanskje
Lever svar
00:19
Er dette uttrykket en potens?
Ja
Lever svar
Nei
Lever svar
Kanskje
Lever svar
00:34
Er uttrykket opphøyd i andre potens?
Ja
Lever svar
Nei
Lever svar
Kanskje
Lever svar
00:38
Finnes det en regel for å gange eksponenter?
Ja
Lever svar
Nei
Lever svar
Kanskje
Lever svar
00:42
Settes det en parentes rundt noe?
Ja
Lever svar
Nei
Lever svar
Kanskje
Lever svar
00:51
Legges det til noe ekstra?
Ja
Lever svar
Nei
Lever svar
Kanskje
Lever svar
00:58
Fortsetter vi å justere uttrykket?
Ja
Lever svar
Nei
Lever svar
Kanskje
Lever svar
01:01
Er dette en annengradsligning?
Ja
Lever svar
Nei
Lever svar
Kanskje
Lever svar
01:06
Har den et konstantledd?
Ja
Lever svar
Nei
Lever svar
Kanskje
Lever svar
01:11
Ligner den på en vanlig annengradsligning?
Ja
Lever svar
Nei
Lever svar
Kanskje
Lever svar
01:23
Er den eneste forskjellen at argumentet er x?
Ja
Lever svar
Nei
Lever svar
Kanskje
Lever svar
01:31
Har ligningen et ledd opphøyd i annen?
Ja
Lever svar
Nei
Lever svar
Kanskje
Lever svar
01:43
Er argumentet tre opphøyd i x?
Ja
Lever svar
Nei
Lever svar
Kanskje
Lever svar
01:48
Skrives noe ned nå?
Ja
Lever svar
Nei
Lever svar
Kanskje
Lever svar
02:02
Bekreftes en handling?
Ja
Lever svar
Nei
Lever svar
Kanskje
Lever svar
02:05
Er 'argumentet' et avansert ord?
Ja
Lever svar
Nei
Lever svar
Kanskje
Lever svar
02:06
Snakkes det fortsatt om annengradsligningen?
Ja
Lever svar
Nei
Lever svar
Kanskje
Lever svar
02:15
Er temaet fortsatt ligningen?
Ja
Lever svar
Nei
Lever svar
Kanskje
Lever svar
02:22
Er argumentet i dette tilfellet tre opphøyd i x?
Ja
Lever svar
Nei
Lever svar
Kanskje
Lever svar
02:26
Markeres argumentet med en ramme?
Ja
Lever svar
Nei
Lever svar
Kanskje
Lever svar
02:30
Innføres ABC-formelen?
Ja
Lever svar
Nei
Lever svar
Kanskje
Lever svar
02:39
Er 'a' del av ABC-formelen?
Ja
Lever svar
Nei
Lever svar
Kanskje
Lever svar
02:42
Er a tallet foran leddet i annen?
Ja
Lever svar
Nei
Lever svar
Kanskje
Lever svar
02:44
Er koeffisienten a lik 1?
Ja
Lever svar
Nei
Lever svar
Kanskje
Lever svar
02:45
Er b = -2 og c = -3?
Ja
Lever svar
Nei
Lever svar
Kanskje
Lever svar
02:48
Kan vi bruke ABC-formelen?
Ja
Lever svar
Nei
Lever svar
Kanskje
Lever svar
03:01
Kan vi bruke kalkulator?
Ja
Lever svar
Nei
Lever svar
Kanskje
Lever svar
03:11
Unngås detaljer her?
Ja
Lever svar
Nei
Lever svar
Kanskje
Lever svar
03:17
Får vi to løsninger?
Ja
Lever svar
Nei
Lever svar
Kanskje
Lever svar
03:25
Er løsningene -1 og 3?
Ja
Lever svar
Nei
Lever svar
Kanskje
Lever svar
03:31
Ble løsningen utregnet på forhånd?
Ja
Lever svar
Nei
Lever svar
Kanskje
Lever svar
03:40
Antas det at du kan løse en annengradsligning?
Ja
Lever svar
Nei
Lever svar
Kanskje
Lever svar
03:43
Spørres det om vi har funnet x?
Ja
Lever svar
Nei
Lever svar
Kanskje
Lever svar
03:47
Har vi funnet tre opphøyd i x istedenfor x?
Ja
Lever svar
Nei
Lever svar
Kanskje
Lever svar
03:52
Er dette nytt sammenlignet med før?
Ja
Lever svar
Nei
Lever svar
Kanskje
Lever svar
03:59
Må vi fortsatt finne x?
Ja
Lever svar
Nei
Lever svar
Kanskje
Lever svar
04:06
Gjenstår det arbeid?
Ja
Lever svar
Nei
Lever svar
Kanskje
Lever svar
04:20
Gjøres en vanlig prosedyre nå?
Ja
Lever svar
Nei
Lever svar
Kanskje
Lever svar
04:24
Velges en løsning først?
Ja
Lever svar
Nei
Lever svar
Kanskje
Lever svar
04:31
Kan vi bruke logaritmer for a^x = b?
Ja
Lever svar
Nei
Lever svar
Kanskje
Lever svar
04:35
Kan x settes foran logaritmen?
Ja
Lever svar
Nei
Lever svar
Kanskje
Lever svar
04:50
Deler vi på koeffisienten?
Ja
Lever svar
Nei
Lever svar
Kanskje
Lever svar
04:59
Må vi dele med tallet som multipliserer x?
Ja
Lever svar
Nei
Lever svar
Kanskje
Lever svar
05:02
Er log(3)/log(3) lik 1?
Ja
Lever svar
Nei
Lever svar
Kanskje
Lever svar
05:08
Blir en løsning x=1?
Ja
Lever svar
Nei
Lever svar
Kanskje
Lever svar
05:13
Har vi en annen mulig løsning?
Ja
Lever svar
Nei
Lever svar
Kanskje
Lever svar
05:25
Finnes det en løsning for 3^x = -1?
Ja
Lever svar
Nei
Lever svar
Kanskje
Lever svar
05:28
Er 3^x alltid positiv?
Ja
Lever svar
Nei
Lever svar
Kanskje
Lever svar
05:34
Gjaldt det en annengradsligning?
Ja
Lever svar
Nei
Lever svar
Kanskje
Lever svar
05:41
Kreves erfaring for å se annengradsligningen i dette?
Ja
Lever svar
Nei
Lever svar
Kanskje
Lever svar
05:55

Skriv så enkelt som mulig

lg(a2b)+lg(a2b2)lg(ba)lg\begin{pmatrix} \frac{a^{2}}{b} \end{pmatrix}+lg(a^{2}b^{2})-lg\begin{pmatrix} \frac{b}{a} \end{pmatrix}

2lga2+lgb2+lgalgb2lga^{2} + lgb^{2} + lga -lgb

Lever svar

5lga5lg \\ a

Lever svar

3lga3lg \\ a

Lever svar
×
Tilbakestill oppgaven som uløst
×
Tilbakestill oppgaven som uløst
×
Tilbakestill oppgaven som uløst
log6\log {6} er det samme som
2log32 \log {3}
Lever svar
log3log2\log {3} - \log {2}
Lever svar
log3+log2\log {3} + \log {2}
Lever svar
×
Tilbakestill oppgaven som uløst
×
Tilbakestill oppgaven som uløst
×
Tilbakestill oppgaven som uløst

Skriv så enkelt som mulig


a) 16227372212\frac{16^2 \cdot 27^3}{72^2 \cdot 12}


b) x2x1xx+1+2xx21\frac{x-2}{x-1} - \frac{x}{x+1} + \frac{2x}{x^2 - 1}


c) lg(2x2)+lg(2x2)+lgxlg(4x)\lg{(\frac{2}{x^2})} + \lg{(2x^2)} + \lg{x} - \lg{(4x)}

lg(82x4)\lg{(\frac{8}{2x^4})}

Lever svar

lg(2x43x3+2x2)\lg{(\frac{2x^4 - 3x^3 + 2}{x^2})}

Lever svar

00

Lever svar
×
Tilbakestill oppgaven som uløst
×
Tilbakestill oppgaven som uløst
×
Tilbakestill oppgaven som uløst
Hvis man løser likningen ax=ba^x = b steg for steg, hva gjør man først?
Tar logaritmen på begge sider av likhetstegnet
Lever svar
Deler på a på begge sider av likhetstegnet
Lever svar
Tar x-teroten på begge sider av likhetstegnet
Lever svar
×
Tilbakestill oppgaven som uløst
×
Tilbakestill oppgaven som uløst
×
Tilbakestill oppgaven som uløst
Gir det mening å si at likningen 32x3x6=03^{2x}-3^x-6=0 er en andregradslikning?
Ja
Lever svar
Bare hvis x = 2
Lever svar
Nei
Lever svar
×
Tilbakestill oppgaven som uløst
×
Tilbakestill oppgaven som uløst
×
Tilbakestill oppgaven som uløst