×
VGS matematikk
1 - 2 - 3 klasse

Lær VGS matten fra A til Å
med de beste metodene

Enkelt å
holde fokus

Forstå det
vanskelige

Få god
oversikt

Øv på
riktig tema

Få hjelp når
du stopper opp

Anne-Lise Frivold Svendsen

Flott opplegg og undervisning😊

Karina Tellmann Marthinussen

Tusen takk!

Ruben Flatås

Gjorde unna R2 som privatist på et halvt år!! Mattevideo har gjort det mye lettere å fordøye et så tungt pensum på så kort tid. Tusen takk for hjelpa!!😊

Vilde Ågotnes

Bra undervisning!

Hamdi A Ahmed

Jeg er fornøyd med videone deres det har hjulpet meg til å bestå matten i både Vgs og Uni . Så takk😊

Halvard Balto

Meget bra!

Halil Ibrahim Keser

Tusen takk. Veldig flink lærer. Gode forklaringer.

Marte Forsberg

Helt topp :D

Jon Mills

Bra side.

Kirsti Beate Årsandøy

Kjempebra!😊

Mari Bertelsen

Bra side. Veldig gode forklaringer😊

Selma Voss

Tror dette kommer til å redde meg på noen prøver fremover. Takk! :D

Caja Magnussen

takk for hjelpen

Abdi Omar

Takk for læreren av denne siden. Det er utrolig en bra side, fikk meg mye. Tusen hjertelig takk

Olav Lunde Arneberg

Kan trygt anbefale Arne Hovland! Beste læreren jeg har hatt i løpet av drøyt 20 år med utdanning.

Daniel Gabrielsen

takk for denne siden :D min 1T mattelærer snakker så monotont og gjør matte så kjedelig at interessen svinner vekk og jeg sovner etter 5 minutter.

Kassi 17 år - har eksamen i R1 til våren.
Min lærer går litt for raskt gjennom r1 pensum, noe som gjør at jeg trenger repetisjon av de vanskeligste emnene...les mer
Liam 34 år - har eksamen i R2 til jul.
Jeg kjøpte medlemskap fordi jeg ønsket forklaring via video og tilgang på "lærer" hele døgnet. Mattevideo er...les mer
Oda 16 år - har eksamen i 1T til våren.
Jeg ble abonnement hos mattevideo fordi jeg slet med å forstå pensum i 1T. Jeg ønsket å prøve, for å se...les mer
Nicolai 21 år - har eksamen i R2 til sommeren.
Jeg ble medlem for å forbedre meg, og gå dypere inn i spesifikke temaer. Jeg går i 10. klasse og tar forsert løp...les mer
Daniel 15 år - har eksamen i 1t til våren.
Jeg ble medlem for å forbedre meg, og gå dypere inn i spesifikke temaer. Jeg går i 10. klasse og tar forsert løp...les mer
June 20 år - preppet til eksamen.
Jeg brukte mattevideo da jeg måtte ta opp igjen eksamen, selvlært. Min gamle lærer gjorde det veldig vanskelig å henge med...les mer
Velg ditt fag
S1 er et studieretningsfag på Vg2-nivå. S1 står for "Samfunnsfaglig matematikk".
Hele læreplan fra A til Å
Videoundervsining alle temaer
Korte og effektive selvtester
Vi gjennomgår eksamen
Organiser temaene etter ønsket lærebok
Kapittelinndeling: Mattevideo.no S1
×
Organiser innholdet etter din lærebok
Organiser videoer med ønskede ikoner
Organiser selvtester med ønskede ikoner
Regning og algebra
, curr: s1, book: 665
11:03
18:32
06:08
10:46
10:38
23:49
17:41
14:20
12:27
17:07
17:20
15:51
14:13
21:05
10:28
16:45
27:26
12:31
12:52
Likninger og ulikheter
, curr: s1, book: 665
24:31
20:52
17:04
27:29
08:55
12:55
03:44
05:30
36:41
Sannsynlighetsregning
, curr: s1, book: 665
16:30
14:09
02:14
05:00
08:37
09:48
10:18
19:08
12:11
30:26
15:52
16:59
06:34
Funksjoner og grafer
, curr: s1, book: 665
13:10
29:30
21:40
06:22
06:09
09:39
09:41
28:06
22:42
26:06
08:45
23:13
Å derivere
, curr: s1, book: 665
13:12
05:59
05:15
07:46
09:27
11:51
10:46
05:59
05:32
03:45
20:42
19:18
Lineær optimering
, curr: s1, book: 665
27:08
17:22
33:15
44:32
Eksamenstid 5 timer Del 1 (Uten hjelpemidler) skal leveres etter 2 timer. Del 2 (Med hjelpemidler) skal leveres etter senest 5 timer.
DEL 1 - Uten hjelpemidler

Oppgave 1 (5 poeng)

  Løs likningene

a) 2x25x+1=x32x^2 - 5x + 1 = x - 3

 

b) 2lg(x+7)=42 \cdot \lg{(x+7)} = 4

 

c) 323x+2=12263 \cdot 2^{3x + 2} = 12 \cdot 2^6

   

Oppgave 2 (2 poeng)

 
Løs likningssystemet

[x2+3y=73xy=1]\begin{bmatrix} x^2 + 3y = 7 \\ 3x - y = 1 \end{bmatrix}

Oppgave 3 (6 poeng)

  Skriv så enkelt som mulig

a) (2x3)22x(2x6)(2x-3)^2 -2x(2x-6)

 

b) lg2a+lg4a+lg8alg16a\lg{2a} + \lg{4a} + \lg{8a} - \lg{16a}

 

c) 1a+1babab\frac{1}{a} + \frac{1}{b} - \frac{a-b}{ab}

Oppgave 4 (2 poeng)

 
Løs ulikheten

x23x+20x^2 - 3x + 2 \geq 0

Oppgave 5 (5 poeng)

 

a) Skriv ned de åtte første radene i Pascals talltrekant.

I en eske ligger det 3 røde og 4 blå kuler. Tenk deg at du skal trekke tilfeldig 3 kuler uten tilbakelegging.  

b) Bestem sannsynligheten for at du trekker tre blå kuler.

 

c) Bestem sannsynligheten for at det er både røde og blå kuler blant de tre kulene du trekker.

 

Oppgave 6 (2 poeng)

 
Skraver området som er avgrenset av ulikhetene nedenfor, i et koordinatsystem.

x0x \geq 0

y8y \leq 8

x+y10x + y \leq 10

3x2y23x - 2y \leq -2

Oppgave 7 (4 poeng)

  Funksjonen f er gitt ved

f(x)=2x1x+2 , x2f(x) = \frac{2x - 1}{x + 2} \ , \ x \neq 2

 
a) Lag en skisse av grafen til f .  
b) Løs likningen f(x)=x2f(x) = x - 2  

Oppgave 8 (7 poeng)

  Funksjonen g er gitt ved

g(x)=2x3+3x212xg(x) = 2x^3+3x^2-12x

a) Bestem g(x)g'(x)  
b) Bestem toppunktet og bunnpunktet på grafen til g.  
c) Bestem den gjennomsnittlige vekstfarten til g i intervallet [0, 2].  
d) Bestem de punktene på grafen der den momentane vekstfarten er 24.  

Oppgave 9 (3 poeng)

  Nedenfor ser du fortegnslinjen til f(x)f'(x), for en funksjon f.

 
a) Bruk fortegnslinjen til å bestemme hvor grafen til f stiger, og hvor den synker.  
b) Lag en skisse som viser hvordan grafen til f kan se ut.
DEL 2 - Med hjelpemidler  

Oppgave 1 (3 poeng)

  Einar er fiskehandler. Han selger torsk og sei. En dag solgte han 110 kg torsk og 200 kg sei. Han fikk 6795 kroner. Dagen etter solgte han 150 kg torsk og 230 kg sei. For dette fikk han 8390 kroner.
Sett opp et likningssystem, og bruk CAS til å bestemme hvilken pris Einar fikk per kilogram for torsken, og hvilken pris han fikk per kilogram for seien.  

Oppgave 2 (6 poeng)

  Et flyselskap har en flyrute mellom Oslo og Bergen. Flyene som brukes, har plass til 116 passasjerer. Sannsynligheten for at en passasjer som har kjøpt billett, ikke møter til flyavgang, er 6 %. Vi lar X være antall passasjerer som møter til en tilfeldig valgt flyavgang.

a) Hva må vi forutsette for å kunne bruke en binomisk sannsynlighetsmodell i denne situasjonen?

I resten av denne oppgaven går vi ut fra at X er binomisk fordelt.

b) Til en flyavgang er det solgt 122 billetter. Bestem sannsynligheten for at alle som møter, får plass på flyet.

Flyselskapet ønsker at sannsynligheten skal være minst 95 % for at alle som møter, skal få plass på flyet.

c) Hvor mange billetter kan flyselskapet maksimalt selge da?

Oppgave 3 (7 poeng)

  Frode og Peter lager to typer fuglekasser. Type A er for meiser, og type B er for ugler. Frode lager delene til kassene, mens Peter setter dem sammen og maler dem.
  • Frode bruker 10 minutter på å lage delene til en kasse av type A og 30 minutter på å lage delene til en kasse av type B.
  • Peter bruker 20 minutter på å sette sammen og male en kasse av type A og 30 minutter på en kasse av type B.
  • I løpet av en uke kan Frode jobbe 15 timer.
  • I løpet av en uke kan Peter jobbe 20 timer.
De produserer x kasser av type A og y kasser av type B.

a) Forklar at x og y må ligge i området som er avgrenset av ulikhetene nedenfor:

x0,y0x \geq 0 , y \geq 0

x+3y90x + 3y \leq 90

2x+3y1202x + 3y \leq 120

 

b) Skraver dette området i et koordinatsystem.

Når de selger fuglekassene, har de en fortjeneste på 60 kroner for en kasse av type A og 150 kroner for en kasse av type B.

c) Hvor mange kasser bør de produsere av hver type for at fortjenesten skal bli størst mulig?

Etterspørselen etter fuglekasser av begge typer er veldig stor, så Frode sier han kan jobbe 3 timer ekstra en uke.

d) Hvor mange kasser bør de produsere av hver type denne uken dersom de vil ha størst mulig fortjeneste?

Oppgave 4 (8 poeng)

  Arne har sommerjobb som montør i en bedrift som produserer en bestemt type pumper. Han har lagt merke til at arbeidstempoet endrer seg i løpet av dagen. En dag teller han opp annenhver time hvor mange pumper han har montert så langt den dagen. Tabellen nedenfor viser resultatet

 

a) Bruk regresjon til å lage et tredjegradspolynom g som kan brukes som modell for hvor mange pumper Arne setter sammen i løpet av de x første timene på jobb en dag.

I resten av oppgaven lar vi funksjonen f gitt ved

f(x)=0,26x3+2,8x2+16x,0x9f(x)=-0,26x^3 + 2,8x^2 + 16x , 0 \leq x \leq 9

være en modell for antall pumper Arne klarer å montere i løpet av de x første timene på jobb en dag.

b) Bruk graftegner til å tegne grafen til f i et koordinatsystem.

Arne kan velge om han vil ha 9 kroner per pumpe han monterer, eller 190 kroner per time han jobber.

c) Hvor mange timer må han jobbe på én dag for at det skal lønne seg å velge betaling per montert pumpe?

d) Hvor mange timer må han jobbe én dag for at forskjellen på lønn per pumpe og lønn per time skal bli størst mulig?

 
Gratis Prøvesmak
Superteknikker
En til en veiledning
S1
 - Kapittelinndeling: Mattevideo.no S1 (gammel læreplan)
 - Funksjoner og grafer
 - Regresjon
×
05:50
Teori 1
Vi ser på lineær regresjon. Både ved tegning og med kalkulator. Linær regresjon med IKT
×
04:37
Teori 2
Lineær regresjon i Geogebra.
15:39
Teori 3
Vi løser en oppgave med ikke-lineær regresjon i Geogebra. Underveis løser vi et problem med gjeldende sifre.
08:45
Oppgave 1
Oppgaven er tegnet på tabell i videoen.
Skjul video ▼
Vis video ▲
Selvtester og oppgaver for mengdetrening
10 sekunders quiz
Eksamensoppgaver
×
Hva beskriver lineær regresjon?
En metode for å finne en rett linje som passer til data
Lever svar
En teknikk for å telle bokstaver i et ord
Lever svar
En måte å velge tilfeldige tall på
Lever svar
00:00
Hva kjennetegner en lineær funksjon?
Den danner en rett linje
Lever svar
Den danner alltid en sirkel
Lever svar
Den har uendelig mange svinger
Lever svar
00:03
Hva menes med en lineær sammenheng?
At økning i x gir jevn økning i y
Lever svar
At økning i x gir tilfeldige endringer i y
Lever svar
At økning i x gjør at y forsvinner
Lever svar
00:18
Hva kalles punktene i et koordinatsystem?
Målepunkter
Lever svar
Bokstaver
Lever svar
Fargede prikker uten betydning
Lever svar
00:24
Hva kan man gjøre om den nøyaktige linjen er usikker?
Prøve og feile for å finne en omtrentlig linje
Lever svar
Gi opp helt
Lever svar
Tegne en sirkel i stedet
Lever svar
01:23
Hvorfor justere linjen i en regresjon?
For å få den til å passe best mulig til punktene
Lever svar
For å gjøre linjen mest mulig fargerik
Lever svar
For at linjen skal forsvinne
Lever svar
01:27
Hva er konstantleddet i en lineær funksjon?
Verdien når x=0
Lever svar
Et tall som endrer seg med x
Lever svar
Et helt vilkårlig tall
Lever svar
01:47
Hva viser stigningstallet?
Hvor mye y øker når x øker med 1
Lever svar
Hvor mye farge endres i en tegning
Lever svar
Hvor raskt man løper 100 meter
Lever svar
02:05
Hva representerer delta i matematikk?
Endring i en variabel
Lever svar
En tilfeldig bokstav
Lever svar
En oppskrift på mat
Lever svar
02:15
Hvordan finner man stigningstallet?
Ved å dele endring i y på endring i x
Lever svar
Ved å legge sammen alle punktene
Lever svar
Ved å se på fargen på linjen
Lever svar
02:45
Hva betyr det å komme tilbake til et tema senere?
At man skal utdype temaet senere
Lever svar
At man glemmer temaet helt
Lever svar
At man bytter tema permanent
Lever svar
03:06
Hva betyr en brøk som y/x?
Forholdet mellom to verdier
Lever svar
En måte å slette tall på
Lever svar
En metode for å tegne figurer
Lever svar
03:12
Hvorfor bruke en kalkulator?
For å regne ut tall raskt og nøyaktig
Lever svar
For å lage lyd
Lever svar
For å fargelegge papir
Lever svar
03:15
Hva vil det si å dele et tall på et annet?
Å finne hvor mange ganger det andre tallet går i det første
Lever svar
Å legge tallene ved siden av hverandre
Lever svar
Å lage et meningsløst tall
Lever svar
03:19
Hva er et desimaltall?
Et tall med sifre etter komma
Lever svar
Et helt tall
Lever svar
Et tall uten praktisk bruk
Lever svar
03:24
Hva gjør en funksjon generelt?
Beskriver en sammenheng mellom variabler
Lever svar
Gjør alt tilfeldig
Lever svar
Fjerner behovet for tall
Lever svar
03:29
Hva brukes regresjon til?
Å tilpasse en modell til data
Lever svar
Å tegne tilfeldige streker
Lever svar
Å finne den raskeste bilen
Lever svar
03:35
Hva kjennetegner et måleresultat med desimaltall?
Det gir en mer presis verdi
Lever svar
Det er uten praktisk betydning
Lever svar
Det kan ikke brukes i beregninger
Lever svar
03:42
Hvilken variabel er ofte uavhengig?
x
Lever svar
y
Lever svar
z
Lever svar
03:47
Hva kan konstantleddet angi?
Funksjonsverdien ved x=0
Lever svar
Hastigheten til en bil
Lever svar
Størrelsen på et hus
Lever svar
03:50
Hva bør man gjøre om noe er uklart i beregningen?
Tydeliggjøre eller markere det
Lever svar
Ignorere det
Lever svar
Slutte å regne
Lever svar
03:53
Hva symboliserer y vanligvis?
Den avhengige variabelen
Lever svar
Antall epler i en kurv
Lever svar
En bokstav uten betydning
Lever svar
03:57
Hva betyr det å gjøre noe manuelt?
Å utføre det for hånd uten automatiske hjelpemidler
Lever svar
Å la en maskin gjøre det
Lever svar
Å hoppe over oppgaven
Lever svar
03:59
Hvorfor velge et større intervall for stigningstall?
For å få et mer nøyaktig gjennomsnitt
Lever svar
For å gjøre alt mer komplisert
Lever svar
For å unngå å finne noen sammenheng
Lever svar
04:21
Hvorfor dele total endring i y på total endring i x?
For å finne stigningstallet
Lever svar
For å endre fargen på grafen
Lever svar
For å slette alle tall
Lever svar
04:26
Hva gjør man når man legger inn data i en kalkulator?
Man registrerer verdier for beregning
Lever svar
Man sletter alle resultater
Lever svar
Man tegner et bilde
Lever svar
04:43
Hva må man oppgi for en regresjon?
Både x- og y-verdier
Lever svar
Bare fargen på pennen
Lever svar
Kun navnet på en person
Lever svar
04:49
Hva kreves for å utføre regresjon på en kalkulator?
At man legger inn alle relevante data
Lever svar
At man tegner figurer
Lever svar
At man gjetter resultatet
Lever svar
04:53
Hvorfor har kalkulatorer egne regresjonsfunksjoner?
For å gjøre det enklere å finne best tilpasset linje
Lever svar
For å endre språkinnstillinger
Lever svar
For å spille musikk
Lever svar
05:09
Hva betyr det at en funksjon er nær den funne modellen?
At den omtrent stemmer med dataene
Lever svar
At den er helt uten sammenheng
Lever svar
At den aldri kan brukes
Lever svar
05:29
Omhandler videoen lineær regresjon?
Nei
Lever svar
Ja
Lever svar
Usikker
Lever svar
00:00
Fortsetter forklaringen etter introduksjonen?
Nei
Lever svar
Ja
Lever svar
Kanskje
Lever svar
00:09
Vises det uventede ting på skjermen?
Nei
Lever svar
Ja
Lever svar
Vet ikke
Lever svar
00:12
Åpnes et program her?
Nei
Lever svar
Ja
Lever svar
Bare delvis
Lever svar
00:15
Legges det inn flere punkter?
Nei
Lever svar
Ja
Lever svar
Vet ikke
Lever svar
00:20
Omhandler dette bruk av punkter?
Nei
Lever svar
Ja
Lever svar
Usikkert
Lever svar
00:28
Føres det inn koordinater?
Nei
Lever svar
Ja
Lever svar
Kanskje
Lever svar
00:45
Lages en regresjonslinje av punktene?
Nei
Lever svar
Ja
Lever svar
Bare noen ganger
Lever svar
00:54
Skal linjen samsvare best mulig med punktene?
Nei
Lever svar
Ja
Lever svar
Uvisst
Lever svar
01:15
Brukes en LinReg-kommando?
Nei
Lever svar
Ja
Lever svar
Vet ikke
Lever svar
01:19
Er en spesifikk kommando helt nødvendig her?
Ja
Lever svar
Nei
Lever svar
Bare av og til
Lever svar
01:30
Skal man sjekke noe før videre arbeid?
Nei
Lever svar
Ja
Lever svar
Kanskje senere
Lever svar
01:34
Kan man bruke hjelpefunksjon for å se kommandoer?
Nei
Lever svar
Ja
Lever svar
Bare i teorien
Lever svar
01:38
Er hjelpen online?
Nei
Lever svar
Ja
Lever svar
Usikkert
Lever svar
01:44
Viser hjelpen kommandoer umiddelbart?
Nei
Lever svar
Ja
Lever svar
Av og til
Lever svar
02:01
Kan man gå for langt i søket?
Nei
Lever svar
Ja
Lever svar
Uklart
Lever svar
02:16
Må kommandoene skrives med spesifikt format?
Nei
Lever svar
Ja
Lever svar
Vet ikke
Lever svar
02:23
Er et enkelt bekreftende utsagn gitt?
Nei
Lever svar
Ja
Lever svar
Muligens
Lever svar
03:02
Passer regresjonslinjen ikke perfekt gjennom punktene?
Nei
Lever svar
Ja
Lever svar
Av og til
Lever svar
03:03
Har linjen et matematisk uttrykk?
Nei
Lever svar
Ja
Lever svar
Uvisst
Lever svar
03:15
Er det en pause eller utelatelse her?
Nei
Lever svar
Ja
Lever svar
Vet ikke
Lever svar
03:23
Brukes korrelasjonskoeffisient for å vurdere regresjon?
Nei
Lever svar
Ja
Lever svar
Kanskje
Lever svar
03:24
Angis det at det skjer mye merkelige ting?
Nei
Lever svar
Ja
Lever svar
Usikkert
Lever svar
03:37
Brukes en liste av punkter i kommandoen?
Nei
Lever svar
Ja
Lever svar
Bare et punkt
Lever svar
03:44
Er det en nølende uttalelse her?
Nei
Lever svar
Ja
Lever svar
Uvisst
Lever svar
03:55
Refereres det til store bokstavnavn?
Nei
Lever svar
Ja
Lever svar
Bare tall
Lever svar
03:58
Er en korrelasjonsverdi nær 1 god?
Nei
Lever svar
Ja
Lever svar
Vet ikke
Lever svar
04:07
Avsluttes delen her?
Nei
Lever svar
Ja
Lever svar
Kanskje
Lever svar
04:27
Indikerer utsagnet en avslutning?
Nei
Lever svar
Ja
Lever svar
Usikkert
Lever svar
04:34
Hvilket alternativ beskriver best hva regresjon går ut på?
Finne avviket mellom overslagregning og eksakt utregning
Lever svar
Finne den funksjonen som best passer med oppgitte data
Lever svar
Finne avviket mellom oppgitte punkter og en graf
Lever svar
×
Tilbakestill oppgaven som uløst
×
Tilbakestill oppgaven som uløst
×
Tilbakestill oppgaven som uløst
Hvilken funksjon er ikke ikke-lineær?
aekxa \cdot e^{kx}
Lever svar
axpa x^p
Lever svar
ax+bax + b
Lever svar
×
Tilbakestill oppgaven som uløst
×
Tilbakestill oppgaven som uløst
×
Tilbakestill oppgaven som uløst
Geogebrakommandoen for lineær regresjon heter..

linreg

Lever svar

reglin

Lever svar

lineær

Lever svar
×
Tilbakestill oppgaven som uløst
×
Tilbakestill oppgaven som uløst
×
Tilbakestill oppgaven som uløst

En bedrift produserer luer. Bedriften har kartlagt den årlige etterspørselen i en by med 20 000 innbyggere, det vil si hvor mange luer de kan få solgt per år i denne byen. Etterspørselen avhenger av prisen. Tabellen nedenfor viser resultatet av kartleggingen.



a) Bruk regresjon til å bestemme den funksjonen av typen Q(x)=abxQ(x) = a \cdot b^x som passer best med tallene i tabellen.


I resten av oppgaven går vi ut fra at E gitt ved


E(x)=15000,995xE(x) = 1500 \cdot 0,995^x


er en god modell for den årlige etterspørselen når prisen x er mellom 50 og 500 kroner.


Bruk graftegner til å tegne grafen til EE for 50x50050 \leq x \leq 500.


c) Hva må prisen per lue være dersom bedriften skal kunne regne med å selge mer enn 1000 luer per år i denne byen?


Bedriften har et ønske om å selge luer for til sammen 100 000 kroner i løpet av ett år.


d) Hvilken pris bør de da sette for en lue?

Se løsning og registrer oppgaven
×