×
VGS matematikk
1 - 2 - 3 klasse

Lær VGS matten fra A til Å
med de beste metodene

Enkelt å
holde fokus

Forstå det
vanskelige

Få god
oversikt

Øv på
riktig tema

Få hjelp når
du stopper opp

Anne-Lise Frivold Svendsen

Flott opplegg og undervisning😊

Karina Tellmann Marthinussen

Tusen takk!

Ruben Flatås

Gjorde unna R2 som privatist på et halvt år!! Mattevideo har gjort det mye lettere å fordøye et så tungt pensum på så kort tid. Tusen takk for hjelpa!!😊

Vilde Ågotnes

Bra undervisning!

Hamdi A Ahmed

Jeg er fornøyd med videone deres det har hjulpet meg til å bestå matten i både Vgs og Uni . Så takk😊

Halvard Balto

Meget bra!

Halil Ibrahim Keser

Tusen takk. Veldig flink lærer. Gode forklaringer.

Marte Forsberg

Helt topp :D

Jon Mills

Bra side.

Kirsti Beate Årsandøy

Kjempebra!😊

Mari Bertelsen

Bra side. Veldig gode forklaringer😊

Selma Voss

Tror dette kommer til å redde meg på noen prøver fremover. Takk! :D

Caja Magnussen

takk for hjelpen

Abdi Omar

Takk for læreren av denne siden. Det er utrolig en bra side, fikk meg mye. Tusen hjertelig takk

Olav Lunde Arneberg

Kan trygt anbefale Arne Hovland! Beste læreren jeg har hatt i løpet av drøyt 20 år med utdanning.

Daniel Gabrielsen

takk for denne siden :D min 1T mattelærer snakker så monotont og gjør matte så kjedelig at interessen svinner vekk og jeg sovner etter 5 minutter.

Kassi 17 år - har eksamen i R1 til våren.
Min lærer går litt for raskt gjennom r1 pensum, noe som gjør at jeg trenger repetisjon av de vanskeligste emnene...les mer
Liam 34 år - har eksamen i R2 til jul.
Jeg kjøpte medlemskap fordi jeg ønsket forklaring via video og tilgang på "lærer" hele døgnet. Mattevideo er...les mer
Oda 16 år - har eksamen i 1T til våren.
Jeg ble abonnement hos mattevideo fordi jeg slet med å forstå pensum i 1T. Jeg ønsket å prøve, for å se...les mer
Nicolai 21 år - har eksamen i R2 til sommeren.
Jeg ble medlem for å forbedre meg, og gå dypere inn i spesifikke temaer. Jeg går i 10. klasse og tar forsert løp...les mer
Daniel 15 år - har eksamen i 1t til våren.
Jeg ble medlem for å forbedre meg, og gå dypere inn i spesifikke temaer. Jeg går i 10. klasse og tar forsert løp...les mer
June 20 år - preppet til eksamen.
Jeg brukte mattevideo da jeg måtte ta opp igjen eksamen, selvlært. Min gamle lærer gjorde det veldig vanskelig å henge med...les mer
Velg ditt fag
S1 er et studieretningsfag på Vg2-nivå. S1 står for "Samfunnsfaglig matematikk".
Hele læreplan fra A til Å
Videoundervsining alle temaer
Korte og effektive selvtester
Vi gjennomgår eksamen
Organiser temaene etter ønsket lærebok
Kapittelinndeling: Mattevideo.no S1
×
Organiser innholdet etter din lærebok
Organiser videoer med ønskede ikoner
Organiser selvtester med ønskede ikoner
Litt repetisjon
, curr: s1, book: 1546
12:37
18:38
25:55
21:34
34:11
25:05
14:39
15:51
29:06
20:52
Logaritmeregning
, curr: s1, book: 1546
31:02
19:21
36:19
09:10
17:37
35:27
15:40
17:22
19:08
Grenseverdier og kontinuitet i funksjoner
, curr: s1, book: 1546
12:55
05:03
66:44
08:47
07:03
11:44
25:42
27:48
Derivasjon i funksjoner
, curr: s1, book: 1546
39:45
22:20
05:59
05:32
31:41
08:34
14:23
20:02
32:15
15:37
29:37
14:31
Sannsynlighetsregning
, curr: s1, book: 1546
12:42
35:08
08:50
25:35
33:12
21:09
38:28
12:11
30:26
Modellering og regresjon
, curr: s1, book: 1546
26:58
23:10
Eksamenstid 5 timer Del 1 (Uten hjelpemidler) skal leveres etter 2 timer. Del 2 (Med hjelpemidler) skal leveres etter senest 5 timer.
DEL 1 - Uten hjelpemidler

Oppgave 1 (5 poeng)

  Løs likningene

a) 2x25x+1=x32x^2 - 5x + 1 = x - 3

 

b) 2lg(x+7)=42 \cdot \lg{(x+7)} = 4

 

c) 323x+2=12263 \cdot 2^{3x + 2} = 12 \cdot 2^6

   

Oppgave 2 (2 poeng)

 
Løs likningssystemet

[x2+3y=73xy=1]\begin{bmatrix} x^2 + 3y = 7 \\ 3x - y = 1 \end{bmatrix}

Oppgave 3 (6 poeng)

  Skriv så enkelt som mulig

a) (2x3)22x(2x6)(2x-3)^2 -2x(2x-6)

 

b) lg2a+lg4a+lg8alg16a\lg{2a} + \lg{4a} + \lg{8a} - \lg{16a}

 

c) 1a+1babab\frac{1}{a} + \frac{1}{b} - \frac{a-b}{ab}

Oppgave 4 (2 poeng)

 
Løs ulikheten

x23x+20x^2 - 3x + 2 \geq 0

Oppgave 5 (5 poeng)

 

a) Skriv ned de åtte første radene i Pascals talltrekant.

I en eske ligger det 3 røde og 4 blå kuler. Tenk deg at du skal trekke tilfeldig 3 kuler uten tilbakelegging.  

b) Bestem sannsynligheten for at du trekker tre blå kuler.

 

c) Bestem sannsynligheten for at det er både røde og blå kuler blant de tre kulene du trekker.

 

Oppgave 6 (2 poeng)

 
Skraver området som er avgrenset av ulikhetene nedenfor, i et koordinatsystem.

x0x \geq 0

y8y \leq 8

x+y10x + y \leq 10

3x2y23x - 2y \leq -2

Oppgave 7 (4 poeng)

  Funksjonen f er gitt ved

f(x)=2x1x+2 , x2f(x) = \frac{2x - 1}{x + 2} \ , \ x \neq 2

 
a) Lag en skisse av grafen til f .  
b) Løs likningen f(x)=x2f(x) = x - 2  

Oppgave 8 (7 poeng)

  Funksjonen g er gitt ved

g(x)=2x3+3x212xg(x) = 2x^3+3x^2-12x

a) Bestem g(x)g'(x)  
b) Bestem toppunktet og bunnpunktet på grafen til g.  
c) Bestem den gjennomsnittlige vekstfarten til g i intervallet [0, 2].  
d) Bestem de punktene på grafen der den momentane vekstfarten er 24.  

Oppgave 9 (3 poeng)

  Nedenfor ser du fortegnslinjen til f(x)f'(x), for en funksjon f.

 
a) Bruk fortegnslinjen til å bestemme hvor grafen til f stiger, og hvor den synker.  
b) Lag en skisse som viser hvordan grafen til f kan se ut.
DEL 2 - Med hjelpemidler  

Oppgave 1 (3 poeng)

  Einar er fiskehandler. Han selger torsk og sei. En dag solgte han 110 kg torsk og 200 kg sei. Han fikk 6795 kroner. Dagen etter solgte han 150 kg torsk og 230 kg sei. For dette fikk han 8390 kroner.
Sett opp et likningssystem, og bruk CAS til å bestemme hvilken pris Einar fikk per kilogram for torsken, og hvilken pris han fikk per kilogram for seien.  

Oppgave 2 (6 poeng)

  Et flyselskap har en flyrute mellom Oslo og Bergen. Flyene som brukes, har plass til 116 passasjerer. Sannsynligheten for at en passasjer som har kjøpt billett, ikke møter til flyavgang, er 6 %. Vi lar X være antall passasjerer som møter til en tilfeldig valgt flyavgang.

a) Hva må vi forutsette for å kunne bruke en binomisk sannsynlighetsmodell i denne situasjonen?

I resten av denne oppgaven går vi ut fra at X er binomisk fordelt.

b) Til en flyavgang er det solgt 122 billetter. Bestem sannsynligheten for at alle som møter, får plass på flyet.

Flyselskapet ønsker at sannsynligheten skal være minst 95 % for at alle som møter, skal få plass på flyet.

c) Hvor mange billetter kan flyselskapet maksimalt selge da?

Oppgave 3 (7 poeng)

  Frode og Peter lager to typer fuglekasser. Type A er for meiser, og type B er for ugler. Frode lager delene til kassene, mens Peter setter dem sammen og maler dem.
  • Frode bruker 10 minutter på å lage delene til en kasse av type A og 30 minutter på å lage delene til en kasse av type B.
  • Peter bruker 20 minutter på å sette sammen og male en kasse av type A og 30 minutter på en kasse av type B.
  • I løpet av en uke kan Frode jobbe 15 timer.
  • I løpet av en uke kan Peter jobbe 20 timer.
De produserer x kasser av type A og y kasser av type B.

a) Forklar at x og y må ligge i området som er avgrenset av ulikhetene nedenfor:

x0,y0x \geq 0 , y \geq 0

x+3y90x + 3y \leq 90

2x+3y1202x + 3y \leq 120

 

b) Skraver dette området i et koordinatsystem.

Når de selger fuglekassene, har de en fortjeneste på 60 kroner for en kasse av type A og 150 kroner for en kasse av type B.

c) Hvor mange kasser bør de produsere av hver type for at fortjenesten skal bli størst mulig?

Etterspørselen etter fuglekasser av begge typer er veldig stor, så Frode sier han kan jobbe 3 timer ekstra en uke.

d) Hvor mange kasser bør de produsere av hver type denne uken dersom de vil ha størst mulig fortjeneste?

Oppgave 4 (8 poeng)

  Arne har sommerjobb som montør i en bedrift som produserer en bestemt type pumper. Han har lagt merke til at arbeidstempoet endrer seg i løpet av dagen. En dag teller han opp annenhver time hvor mange pumper han har montert så langt den dagen. Tabellen nedenfor viser resultatet

 

a) Bruk regresjon til å lage et tredjegradspolynom g som kan brukes som modell for hvor mange pumper Arne setter sammen i løpet av de x første timene på jobb en dag.

I resten av oppgaven lar vi funksjonen f gitt ved

f(x)=0,26x3+2,8x2+16x,0x9f(x)=-0,26x^3 + 2,8x^2 + 16x , 0 \leq x \leq 9

være en modell for antall pumper Arne klarer å montere i løpet av de x første timene på jobb en dag.

b) Bruk graftegner til å tegne grafen til f i et koordinatsystem.

Arne kan velge om han vil ha 9 kroner per pumpe han monterer, eller 190 kroner per time han jobber.

c) Hvor mange timer må han jobbe på én dag for at det skal lønne seg å velge betaling per montert pumpe?

d) Hvor mange timer må han jobbe én dag for at forskjellen på lønn per pumpe og lønn per time skal bli størst mulig?

 
Gratis Prøvesmak
Superteknikker
En til en veiledning
S1
 - Kapittelinndeling: Mattevideo.no S1 (oppdatert læreplan)
 - Litt repetisjon
 - Polynomdivisjon
×
05:36
Teori 1
Vi varmer opp til polynomdivisjon, ved å se på divisjon av vanlige tall.
×
08:53
Teori 2
Polynomdivisjon (med og uten rest).
03:14
Teori 3
Polynomdivisjon og faktorisering.
03:51
Teori 4
Hva kan polynomet deles på? Et polynom kan deles på (x - a) dersom polynomet har a som nullpunkt. Vi ser på hvorfor det er slik.
11:35
Oppgave 1
Gitt funksjonen  f(x)=2x3+8x2+2x12f(x)=2x^3 +8x^2+2x-12
   a) Undersøk om  f(x)  er delelig med:  1) (x-1),  2) (x+1),  3) (x-2)
   b) Faktoriser  f(x) .
02:09
Oppgave 2
Bestem tallet a slik at divisjonen  (x3+ax2+ax+4):(x+2)(x^3 + ax^2 +ax +4) : (x+2)  går opp.
07:47
Oppgave 3
Gitt likningen x36x2+11x6=0x^3 - 6x^2 +11x -6 = 0 . Undersøk om 0, 1, eller 2 er løsning på likningen. Løs deretter likningen. 
12:40
Oppgave 4
Forkort brøken  3x36x215x+183x212{ \frac{3{x^3} - 6{x^2} - 15x +18}{3 {x^2} - 12}} .
Skjul video ▼
Vis video ▲
Selvtester og oppgaver for mengdetrening
10 sekunders quiz
Eksamensoppgaver
×
Hva kan polynomdivisjon brukes til?
Å legge sammen tall
Lever svar
Å faktorisere polynomer
Lever svar
Å gjøre om brøker
Lever svar
00:00
24 delt på 8 blir?
6
Lever svar
3
Lever svar
4
Lever svar
00:23
Hva betyr "ekvivalent" her?
At to uttrykk er likeverdige
Lever svar
At tallene er ulike
Lever svar
At det er et tilfeldig symbol
Lever svar
00:37
Hva ble gjort med uttrykkene?
De ble ganget
Lever svar
De ble subtrahert
Lever svar
De ble delt
Lever svar
01:17
Hvilke termer nevnes men trenger ikke pugges?
Dividende og devisor
Lever svar
Koeffisient og konstant
Lever svar
Sum og differens
Lever svar
01:20
Hvilken aritmetisk setning sammenlignes med polynomdivisjon?
24/8=3
Lever svar
2+2=4
Lever svar
10-3=7
Lever svar
01:28
Hva får vi ved å faktorisere et tredjegradspolynom?
Flere faktorer
Lever svar
Ingen faktorer
Lever svar
Bare en faktor
Lever svar
01:34
Hvilke tall ble valgt for faktoriseringen?
3 og 4
Lever svar
2 og 6
Lever svar
1 og 12
Lever svar
02:20
Hvor mange faktorer kan tredjegradspolynomet splittes i?
3
Lever svar
2
Lever svar
4
Lever svar
02:46
Hva er et eksempel på en førstepartsfaktor?
x - 1
Lever svar
x + 2
Lever svar
x - 4
Lever svar
02:55
Hvilke to faktorer fikk vi fra andregradspolynomet?
x - 3 og x + 4
Lever svar
x - 2 og x + 6
Lever svar
x - 1 og x + 5
Lever svar
03:00
Hva handler polynomdivisjon om?
Å dele polynomer på hverandre.
Lever svar
Å multiplisere polynomer.
Lever svar
Å addere polynomer.
Lever svar
00:00
Hvor mange eksempler skal vi gå gjennom først?
To
Lever svar
Tre
Lever svar
Fire
Lever svar
00:26
Hva er det første steget i divisjonsalgoritmen?
Finne hvor mange ganger divisoren går opp i de første sifrene.
Lever svar
Multiplisere divisoren med dividenden.
Lever svar
Legge sammen divisoren og dividenden.
Lever svar
00:38
Hva gjør vi hvis det første sifferet er mindre enn divisoren?
Tar med neste siffer.
Lever svar
Skriver ned null.
Lever svar
Stopper delingen.
Lever svar
00:43
Hva gjør vi når tallet fortsatt er for lite til å dele på divisoren?
Tar med enda et siffer til.
Lever svar
Legger til null i svaret.
Lever svar
Multipliserer divisoren.
Lever svar
00:48
Hva skriver vi i kvotienten når divisoren går én gang opp i tallet?
1
Lever svar
0
Lever svar
9
Lever svar
00:53
Hvor mange ganger går 9 opp i 15?
1 gang
Lever svar
2 ganger
Lever svar
3 ganger
Lever svar
01:02
Hva gjør vi etter å ha funnet hvor mange ganger divisoren går opp i tallet?
Multipliserer kvotienten med divisoren og skriver resultatet under.
Lever svar
Legger kvotienten til divisoren.
Lever svar
Deler kvotienten på divisoren.
Lever svar
01:03
Hva gjør vi med resultatet etter multiplikasjonen?
Trekker det fra tallet over.
Lever svar
Legger det til tallet over.
Lever svar
Skriver det som sluttresultat.
Lever svar
01:09
Hva finner vi når vi trekker produktet fra tallet over?
Resten
Lever svar
Kvotienten
Lever svar
Divisoren
Lever svar
01:16
Hva gjør vi hvis resten er mindre enn divisoren?
Henter ned neste siffer fra dividenden.
Lever svar
Avslutter delingen.
Lever svar
Legger til null i kvotienten.
Lever svar
01:25
Hva gjør vi hvis divisoren ikke går opp i tallet nøyaktig?
Finner det største multiplum som er mindre enn tallet.
Lever svar
Legger til flere nuller til tallet.
Lever svar
Avrunder oppover til neste multiplum.
Lever svar
01:44
Hvorfor skriver vi tallet 7 i kvotienten når vi deler 65 på 9?
Fordi 9 ganger 7 er det største produktet under 65.
Lever svar
Fordi 9 ganger 7 er over 65.
Lever svar
Fordi 7 er resten.
Lever svar
01:54
Hva gjør vi etter å ha funnet neste siffer i kvotienten?
Gjentar prosessen med subtraksjon og nedhenting av sifre.
Lever svar
Avslutter delingen.
Lever svar
Multipliserer kvotienten med en ny divisor.
Lever svar
02:23
Hva får vi når vi trekker 63 fra 65?
2
Lever svar
0
Lever svar
4
Lever svar
02:25
Hvorfor er det viktig å velge det største multiplum som er mindre enn tallet vi deler?
For å minimere resten og fortsette delingen korrekt.
Lever svar
For å få en større kvotient.
Lever svar
For å unngå å få null i resten.
Lever svar
02:47
Hva gjør vi etter å ha hentet ned det siste sifferet?
Deler det nye tallet på divisoren.
Lever svar
Avslutter regnestykket.
Lever svar
Multipliserer det nye tallet med divisoren.
Lever svar
03:01
Hva indikerer det når resten blir null?
At delingen går opp.
Lever svar
At vi har gjort en feil.
Lever svar
At vi må fortsette delingen.
Lever svar
03:06
Hva betyr det når det ikke er flere sifre å hente ned?
At delingen er ferdig.
Lever svar
At vi må legge til desimaler.
Lever svar
At vi starter på nytt.
Lever svar
03:12
Hva skjer hvis delingen ikke går opp?
Vi får en rest.
Lever svar
Vi får en feil kvotient.
Lever svar
Vi må dele på nytt.
Lever svar
03:40
Hva kalles tallet som blir igjen når delingen ikke går opp?
Rest
Lever svar
Kvotient
Lever svar
Divisor
Lever svar
03:45
Hva skjer hvis vi deler 1559 på 9?
Vi får en rest.
Lever svar
Delingen går opp uten rest.
Lever svar
Vi får null i kvotient.
Lever svar
03:51
Hva kan vi gjøre hvis vi ønsker å fortsette delingen etter å ha fått en rest?
Legge til et komma og null i dividenden.
Lever svar
Avslutte delingen.
Lever svar
Multiplisere resten med divisoren.
Lever svar
05:17
Hvordan kan vi uttrykke resten som en brøk?
Resten delt på divisoren.
Lever svar
Dividenden delt på resten.
Lever svar
Divisoren delt på resten.
Lever svar
05:24
Hva betyr det å skrive svaret som et blandet tall?
Å kombinere heltallsdelen med brøkdelen.
Lever svar
Å skrive svaret kun som en brøk.
Lever svar
Å ignorere resten.
Lever svar
05:27
Hva skal vi undersøke i videoen?
Hvordan løse en likning
Lever svar
Hvilke uttrykk et polynom kan deles på
Lever svar
Hvorfor tall blir negative
Lever svar
00:00
Hva slags uttrykk deler vi polynomet på?
Andregradsuttrykk
Lever svar
Førstegradsuttrykk
Lever svar
Konstanter
Lever svar
00:08
Hva betyr det å faktorisere et polynom?
Legge til flere ukjente
Lever svar
Skrive det som produkt av enklere faktorer
Lever svar
Beregne et integral
Lever svar
00:27
Hva kaller vi et matematisk uttrykk med variabler og koeffisienter?
En likning
Lever svar
Et polynom
Lever svar
En brøk
Lever svar
00:40
Hva kalles verdier av x som gir polynomet verdien null?
Koeffisienter
Lever svar
Nullpunkter
Lever svar
Røtter av en likning
Lever svar
00:42
Hvis (x - a) er en faktor, hva er a?
En vilkårlig konstant
Lever svar
Et nullpunkt
Lever svar
En koeffisient
Lever svar
01:10
Hva blir summen når du legger til det motsatte av et tall?
Det opprinnelige tallet
Lever svar
Null
Lever svar
Ett
Lever svar
01:18
Hvordan sjekker man om et tall er et nullpunkt for et polynom?
Legg til 1 og se om det øker
Lever svar
Sett inn tallet og sjekk om resultatet er 0
Lever svar
Ignorer tallet
Lever svar
01:24
Hvordan finner man verdien av et polynom for en bestemt x?
Trekke fra x to ganger
Lever svar
Erstatte x med verdien og regne ut
Lever svar
Legge til koeffisientene
Lever svar
01:39
Hva betyr det hvis P(a) = 0?
a er en tilfeldig konstant
Lever svar
x = a er et nullpunkt
Lever svar
Polynomet er alltid 0
Lever svar
01:52
Hvis x = a er et nullpunkt, hva kan polynomet deles på?
a - x
Lever svar
x - a
Lever svar
x + a
Lever svar
02:20
Må man bruke et bestemt nullpunkt for å dele polynomet?
Ja, alltid det største
Lever svar
Nei, alle nullpunkter fungerer
Lever svar
Ja, alltid det minste
Lever svar
02:35
Kan et polynom med flere nullpunkter deles på (x - hver av disse nullpunktene)?
Nei
Lever svar
Ja
Lever svar
Bare noen ganger
Lever svar
02:58
Hvis a er et nullpunkt, kan polynomet deles på (x - a)?
Nei
Lever svar
Ja
Lever svar
Bare hvis a er positiv
Lever svar
03:09
Hvordan sjekker man om (x - a) deler et polynom P(x)?
Test om P(a)=1
Lever svar
Test om P(a)=0
Lever svar
Test om P(x)=a
Lever svar
03:34
Hva skjer når deling ikke gir oss et heltall?
Vi får "rest" som brøk/desimal
Lever svar
Vi får ikke et svar
Lever svar
Deling går alltid opp
Lever svar
×
Tilbakestill oppgaven som uløst
×
Tilbakestill oppgaven som uløst
×
Tilbakestill oppgaven som uløst
Hvilket tall fokuserer vi først på ved polynomdivisjon?
Det av høyest grad
Lever svar
Det største tallet
Lever svar
Det bakerste tallet
Lever svar
×
Tilbakestill oppgaven som uløst
×
Tilbakestill oppgaven som uløst
×
Tilbakestill oppgaven som uløst
Hvorfor polynomderiverer vi?
For å kunne faktorisere
Lever svar
Bare fordi oppgaven spør om det
Lever svar
For å tegne grafen til en funksjon i geogebra
Lever svar
×
Tilbakestill oppgaven som uløst
×
Tilbakestill oppgaven som uløst
×
Tilbakestill oppgaven som uløst
Hvilke tall er nullpunkter her: (x+3) * (x-4)?
3 og 4
Lever svar
-3 og -4
Lever svar
-3 og 4
Lever svar
×
Tilbakestill oppgaven som uløst
×
Tilbakestill oppgaven som uløst
×
Tilbakestill oppgaven som uløst