×
VGS matematikk
1 - 2 - 3 klasse

Lær VGS matten fra A til Å
med de beste metodene

Enkelt å
holde fokus

Forstå det
vanskelige

Få god
oversikt

Øv på
riktig tema

Få hjelp når
du stopper opp

Anne-Lise Frivold Svendsen

Flott opplegg og undervisning😊

Karina Tellmann Marthinussen

Tusen takk!

Ruben Flatås

Gjorde unna R2 som privatist på et halvt år!! Mattevideo har gjort det mye lettere å fordøye et så tungt pensum på så kort tid. Tusen takk for hjelpa!!😊

Vilde Ågotnes

Bra undervisning!

Hamdi A Ahmed

Jeg er fornøyd med videone deres det har hjulpet meg til å bestå matten i både Vgs og Uni . Så takk😊

Halvard Balto

Meget bra!

Halil Ibrahim Keser

Tusen takk. Veldig flink lærer. Gode forklaringer.

Marte Forsberg

Helt topp :D

Jon Mills

Bra side.

Kirsti Beate Årsandøy

Kjempebra!😊

Mari Bertelsen

Bra side. Veldig gode forklaringer😊

Selma Voss

Tror dette kommer til å redde meg på noen prøver fremover. Takk! :D

Caja Magnussen

takk for hjelpen

Abdi Omar

Takk for læreren av denne siden. Det er utrolig en bra side, fikk meg mye. Tusen hjertelig takk

Olav Lunde Arneberg

Kan trygt anbefale Arne Hovland! Beste læreren jeg har hatt i løpet av drøyt 20 år med utdanning.

Daniel Gabrielsen

takk for denne siden :D min 1T mattelærer snakker så monotont og gjør matte så kjedelig at interessen svinner vekk og jeg sovner etter 5 minutter.

Kassi 17 år - har eksamen i R1 til våren.
Min lærer går litt for raskt gjennom r1 pensum, noe som gjør at jeg trenger repetisjon av de vanskeligste emnene...les mer
Liam 34 år - har eksamen i R2 til jul.
Jeg kjøpte medlemskap fordi jeg ønsket forklaring via video og tilgang på "lærer" hele døgnet. Mattevideo er...les mer
Oda 16 år - har eksamen i 1T til våren.
Jeg ble abonnement hos mattevideo fordi jeg slet med å forstå pensum i 1T. Jeg ønsket å prøve, for å se...les mer
Nicolai 21 år - har eksamen i R2 til sommeren.
Jeg ble medlem for å forbedre meg, og gå dypere inn i spesifikke temaer. Jeg går i 10. klasse og tar forsert løp...les mer
Daniel 15 år - har eksamen i 1t til våren.
Jeg ble medlem for å forbedre meg, og gå dypere inn i spesifikke temaer. Jeg går i 10. klasse og tar forsert løp...les mer
June 20 år - preppet til eksamen.
Jeg brukte mattevideo da jeg måtte ta opp igjen eksamen, selvlært. Min gamle lærer gjorde det veldig vanskelig å henge med...les mer
Velg ditt fag
S1 er et studieretningsfag på Vg2-nivå. S1 står for "Samfunnsfaglig matematikk".
Hele læreplan fra A til Å
Videoundervsining alle temaer
Korte og effektive selvtester
Vi gjennomgår eksamen
Organiser temaene etter ønsket lærebok
Kapittelinndeling: Mattevideo.no S1
×
Organiser innholdet etter din lærebok
Organiser videoer med ønskede ikoner
Organiser selvtester med ønskede ikoner
Litt repetisjon
, curr: s1, book: 1546
12:37
18:38
25:55
21:34
34:11
25:05
14:39
15:51
29:06
20:52
Logaritmeregning
, curr: s1, book: 1546
31:02
19:21
36:19
09:10
17:37
35:27
15:40
17:22
19:08
Grenseverdier og kontinuitet i funksjoner
, curr: s1, book: 1546
12:55
05:03
66:44
08:47
07:03
11:44
25:42
27:48
Derivasjon i funksjoner
, curr: s1, book: 1546
39:45
22:20
05:59
05:32
31:41
08:34
14:23
20:02
32:15
15:37
29:37
14:31
Sannsynlighetsregning
, curr: s1, book: 1546
12:42
35:08
08:50
25:35
33:12
21:09
38:28
12:11
30:26
Modellering og regresjon
, curr: s1, book: 1546
26:58
23:10
Eksamenstid 5 timer Del 1 (Uten hjelpemidler) skal leveres etter 2 timer. Del 2 (Med hjelpemidler) skal leveres etter senest 5 timer.
DEL 1 - Uten hjelpemidler

Oppgave 1 (5 poeng)

  Løs likningene

a) 2x25x+1=x32x^2 - 5x + 1 = x - 3

 

b) 2lg(x+7)=42 \cdot \lg{(x+7)} = 4

 

c) 323x+2=12263 \cdot 2^{3x + 2} = 12 \cdot 2^6

   

Oppgave 2 (2 poeng)

 
Løs likningssystemet

[x2+3y=73xy=1]\begin{bmatrix} x^2 + 3y = 7 \\ 3x - y = 1 \end{bmatrix}

Oppgave 3 (6 poeng)

  Skriv så enkelt som mulig

a) (2x3)22x(2x6)(2x-3)^2 -2x(2x-6)

 

b) lg2a+lg4a+lg8alg16a\lg{2a} + \lg{4a} + \lg{8a} - \lg{16a}

 

c) 1a+1babab\frac{1}{a} + \frac{1}{b} - \frac{a-b}{ab}

Oppgave 4 (2 poeng)

 
Løs ulikheten

x23x+20x^2 - 3x + 2 \geq 0

Oppgave 5 (5 poeng)

 

a) Skriv ned de åtte første radene i Pascals talltrekant.

I en eske ligger det 3 røde og 4 blå kuler. Tenk deg at du skal trekke tilfeldig 3 kuler uten tilbakelegging.  

b) Bestem sannsynligheten for at du trekker tre blå kuler.

 

c) Bestem sannsynligheten for at det er både røde og blå kuler blant de tre kulene du trekker.

 

Oppgave 6 (2 poeng)

 
Skraver området som er avgrenset av ulikhetene nedenfor, i et koordinatsystem.

x0x \geq 0

y8y \leq 8

x+y10x + y \leq 10

3x2y23x - 2y \leq -2

Oppgave 7 (4 poeng)

  Funksjonen f er gitt ved

f(x)=2x1x+2 , x2f(x) = \frac{2x - 1}{x + 2} \ , \ x \neq 2

 
a) Lag en skisse av grafen til f .  
b) Løs likningen f(x)=x2f(x) = x - 2  

Oppgave 8 (7 poeng)

  Funksjonen g er gitt ved

g(x)=2x3+3x212xg(x) = 2x^3+3x^2-12x

a) Bestem g(x)g'(x)  
b) Bestem toppunktet og bunnpunktet på grafen til g.  
c) Bestem den gjennomsnittlige vekstfarten til g i intervallet [0, 2].  
d) Bestem de punktene på grafen der den momentane vekstfarten er 24.  

Oppgave 9 (3 poeng)

  Nedenfor ser du fortegnslinjen til f(x)f'(x), for en funksjon f.

 
a) Bruk fortegnslinjen til å bestemme hvor grafen til f stiger, og hvor den synker.  
b) Lag en skisse som viser hvordan grafen til f kan se ut.
DEL 2 - Med hjelpemidler  

Oppgave 1 (3 poeng)

  Einar er fiskehandler. Han selger torsk og sei. En dag solgte han 110 kg torsk og 200 kg sei. Han fikk 6795 kroner. Dagen etter solgte han 150 kg torsk og 230 kg sei. For dette fikk han 8390 kroner.
Sett opp et likningssystem, og bruk CAS til å bestemme hvilken pris Einar fikk per kilogram for torsken, og hvilken pris han fikk per kilogram for seien.  

Oppgave 2 (6 poeng)

  Et flyselskap har en flyrute mellom Oslo og Bergen. Flyene som brukes, har plass til 116 passasjerer. Sannsynligheten for at en passasjer som har kjøpt billett, ikke møter til flyavgang, er 6 %. Vi lar X være antall passasjerer som møter til en tilfeldig valgt flyavgang.

a) Hva må vi forutsette for å kunne bruke en binomisk sannsynlighetsmodell i denne situasjonen?

I resten av denne oppgaven går vi ut fra at X er binomisk fordelt.

b) Til en flyavgang er det solgt 122 billetter. Bestem sannsynligheten for at alle som møter, får plass på flyet.

Flyselskapet ønsker at sannsynligheten skal være minst 95 % for at alle som møter, skal få plass på flyet.

c) Hvor mange billetter kan flyselskapet maksimalt selge da?

Oppgave 3 (7 poeng)

  Frode og Peter lager to typer fuglekasser. Type A er for meiser, og type B er for ugler. Frode lager delene til kassene, mens Peter setter dem sammen og maler dem.
  • Frode bruker 10 minutter på å lage delene til en kasse av type A og 30 minutter på å lage delene til en kasse av type B.
  • Peter bruker 20 minutter på å sette sammen og male en kasse av type A og 30 minutter på en kasse av type B.
  • I løpet av en uke kan Frode jobbe 15 timer.
  • I løpet av en uke kan Peter jobbe 20 timer.
De produserer x kasser av type A og y kasser av type B.

a) Forklar at x og y må ligge i området som er avgrenset av ulikhetene nedenfor:

x0,y0x \geq 0 , y \geq 0

x+3y90x + 3y \leq 90

2x+3y1202x + 3y \leq 120

 

b) Skraver dette området i et koordinatsystem.

Når de selger fuglekassene, har de en fortjeneste på 60 kroner for en kasse av type A og 150 kroner for en kasse av type B.

c) Hvor mange kasser bør de produsere av hver type for at fortjenesten skal bli størst mulig?

Etterspørselen etter fuglekasser av begge typer er veldig stor, så Frode sier han kan jobbe 3 timer ekstra en uke.

d) Hvor mange kasser bør de produsere av hver type denne uken dersom de vil ha størst mulig fortjeneste?

Oppgave 4 (8 poeng)

  Arne har sommerjobb som montør i en bedrift som produserer en bestemt type pumper. Han har lagt merke til at arbeidstempoet endrer seg i løpet av dagen. En dag teller han opp annenhver time hvor mange pumper han har montert så langt den dagen. Tabellen nedenfor viser resultatet

 

a) Bruk regresjon til å lage et tredjegradspolynom g som kan brukes som modell for hvor mange pumper Arne setter sammen i løpet av de x første timene på jobb en dag.

I resten av oppgaven lar vi funksjonen f gitt ved

f(x)=0,26x3+2,8x2+16x,0x9f(x)=-0,26x^3 + 2,8x^2 + 16x , 0 \leq x \leq 9

være en modell for antall pumper Arne klarer å montere i løpet av de x første timene på jobb en dag.

b) Bruk graftegner til å tegne grafen til f i et koordinatsystem.

Arne kan velge om han vil ha 9 kroner per pumpe han monterer, eller 190 kroner per time han jobber.

c) Hvor mange timer må han jobbe på én dag for at det skal lønne seg å velge betaling per montert pumpe?

d) Hvor mange timer må han jobbe én dag for at forskjellen på lønn per pumpe og lønn per time skal bli størst mulig?

 
Gratis Prøvesmak
Superteknikker
En til en veiledning
S1
 - Kapittelinndeling: Mattevideo.no S1 (oppdatert læreplan)
 - Logaritmeregning
 - Logaritmer med \n base 10 og e
×
03:46
Teori 1
Tierlogaritmer. Definisjonen.

r1_2436
×
02:50
Teori 2
Vi bruker logaritmedefinisjonen til å regne ut noen logaritmer.

r1_2438
08:07
Teori 3
Vi finner tierlogaritmer med en hjemmelagd python-kode - basert på definisjonen av logaritme.
03:52
Teori 4
Likningene 10x=a10^x = a og lgx=blgx = b
03:28
Teori 5
Tallet e - Eulers tall.

r1_2648
03:40
Teori 6
ex    og    lnxe^x\;\;og\;\;ln x   - den naturlige logaritmen.

r1_2650
04:22
Teori 7
Likningen  ex=ae^x = a
02:47
Teori 8
lnx=blnx=b
03:27
Teori 9
Å bytte grunntall i eksponentialfunksjoner.

r1_2656
02:57
Oppgave 1
Likningen  ax=ba^x=b
03:23
Oppgave 2
Løs likningen  e2x+ex=0e^{2x} + e^x = 0
02:50
Oppgave 3
Løs likningen  ex+ex=2e^x + e^{-x}=2
Skjul video ▼
Vis video ▲
Selvtester og oppgaver for mengdetrening
10 sekunders quiz
Eksamensoppgaver
×
Hva kalles logaritmer med base 10?
Naturlige logaritmer
Lever svar
Tierlogaritmer
Lever svar
Logaritmer med base e
Lever svar
00:00
Hvilken funksjon danner grunnlaget for tierlogaritmen?
e opphøyd i x
Lever svar
10 opphøyd i x
Lever svar
x opphøyd i 10
Lever svar
00:08
Er 10 opphøyd i x alltid positiv?
Ja
Lever svar
Nei
Lever svar
Bare når x er positiv
Lever svar
01:00
Hva er 10 opphøyd i minus en?
10
Lever svar
0,1
Lever svar
0
Lever svar
01:02
Hva er 10 opphøyd i null?
1
Lever svar
0
Lever svar
10
Lever svar
01:09
Hva er et hvert tall opphøyd i null?
1
Lever svar
0
Lever svar
-1
Lever svar
01:14
Hva er 10 opphøyd i en halv?
Kvadratroten av 10
Lever svar
10
Lever svar
1/10
Lever svar
01:32
Er kvadratroten av 10 litt over 3?
Ja
Lever svar
Nei
Lever svar
Den er nøyaktig 3
Lever svar
01:52
Er grafen til 10 opphøyd i x stigende?
Ja
Lever svar
Nei
Lever svar
Den er konstant
Lever svar
01:59
Hva uttrykker en logaritme?
En eksponent
Lever svar
En divisor
Lever svar
En rot
Lever svar
02:04
Hva kalles logaritmen til 5?
logg 5
Lever svar
5
Lever svar
ln 5
Lever svar
02:09
Hva heter tallet man får ved å ta logg av 5?
Logaritmen til 5
Lever svar
Logaritmen til 10
Lever svar
Logaritmen til -5
Lever svar
02:41
Hva angir logaritmen til et tall?
Eksponenten til 10
Lever svar
Faktoren vi må dele med
Lever svar
Roten av tallet
Lever svar
02:45
Hva får vi hvis vi tar 10 opphøyd i logg(5)?
10
Lever svar
5
Lever svar
1
Lever svar
02:58
Kan vi ta logaritmen av et negativt tall?
Nei
Lever svar
Ja
Lever svar
Bare av -1
Lever svar
03:06
Hva er 10 opphøyd i logg(p)?
p
Lever svar
1
Lever svar
10
Lever svar
03:32
Må p være positiv for å ta logg(p)?
Ja
Lever svar
Nei
Lever svar
Bare hvis p er heltall
Lever svar
03:39
Hva studeres i denne videoen?
Ti-logaritmer
Lever svar
Brøkregning
Lever svar
Geometri
Lever svar
00:00
Hva beskriver en logaritme?
En eksponent
Lever svar
En addisjon
Lever svar
En subtraksjon
Lever svar
00:12
Hva forteller logaritmen oss?
Hvilken eksponent som gir tallet
Lever svar
Hvor stort tallet er
Lever svar
Hvor mange ganger vi adderer tall
Lever svar
00:27
Hva betyr '=' i en ligning?
At to uttrykk har samme verdi
Lever svar
At ett tall er større enn et annet
Lever svar
At vi gjetter en verdi
Lever svar
00:40
Hva gjør en eksponent?
Angir hvor mange ganger basen multipliseres med seg selv
Lever svar
Legger tallene sammen
Lever svar
Deler tallene
Lever svar
00:42
Hva betyr en negativ eksponent?
At tallet er en brøkdel av basen
Lever svar
At tallet blir større
Lever svar
At vi ikke kan regne det ut
Lever svar
00:51
Hva er en kvadratrot?
Et tall som ganget med seg selv gir originaltallet
Lever svar
Et tall som legges til seg selv
Lever svar
Et tall som subtraheres fra basen
Lever svar
01:07
Hva kreves for å finne en logaritme?
Å vite eksponenten til basen
Lever svar
Å trekke fra basen
Lever svar
Å dele tallet på basen
Lever svar
01:22
Hva er basen i en ti-logaritme?
10
Lever svar
2
Lever svar
1
Lever svar
01:32
Hva kalles løsningen på en ligning?
Svaret
Lever svar
Gjetningen
Lever svar
Feilmarginen
Lever svar
01:39
Hvilke tall kan vi ta logaritmen av?
Positive tall
Lever svar
Negative tall
Lever svar
Alle tall
Lever svar
01:43
Hva betyr en brøk som eksponent?
En rot av tallet
Lever svar
En sum av tallene
Lever svar
En differanse av tallene
Lever svar
01:51
Hva gjør en større eksponent med tallet (basen > 1)?
Tallet blir større
Lever svar
Tallet blir mindre
Lever svar
Tallet endres ikke
Lever svar
01:56
Hva er fem i uttrykket 10^5?
Eksponenten
Lever svar
Basen
Lever svar
Logaritmen
Lever svar
02:03
Hva kalles tallet vi opphøyer basen i?
Eksponent
Lever svar
Faktor
Lever svar
Summand
Lever svar
02:12
Kan vi ta logaritmen av et negativt tall?
Nei
Lever svar
Ja
Lever svar
Bare noen ganger
Lever svar
02:22
Er logaritmen til et negativt tall definert?
Nei
Lever svar
Ja
Lever svar
Kun i spesielle tilfeller
Lever svar
02:29
Hva skjer på en kalkulator hvis vi tar log av et negativt tall?
Feilmelding
Lever svar
Riktig svar
Lever svar
Et gyldig tall
Lever svar
02:39
Hva beskriver en logaritme?
Hvor mange ganger vi ganger et tall med seg selv
Lever svar
Hvilken eksponent som trengs for å oppnå et gitt tall
Lever svar
Hvor mye et tall øker når vi legger til en
Lever svar
00:00
Hva er grunntallet i en vanlig logaritme (lg)?
2
Lever svar
10
Lever svar
e
Lever svar
00:08
Hva kalles resultatet av 10 opphøyd i en eksponent?
En potensverdi
Lever svar
En rotverdi
Lever svar
En differanse
Lever svar
00:17
Hva representerer vanligvis x i en ligning?
En konstant
Lever svar
En ukjent variabel
Lever svar
Et tilfeldig symbol uten betydning
Lever svar
00:26
Hva betyr det når noe er logisk i matematikk?
At det følger gyldige slutninger
Lever svar
At det er tilfeldig
Lever svar
At det er umulig å forstå
Lever svar
00:35
Hva betyr det om en ligning har én unik løsning?
At den har ingen løsning
Lever svar
At den har akkurat én løsning
Lever svar
At den har uendelig mange løsninger
Lever svar
00:38
Hvilken type tall kan vi ta logaritmen av?
Negative tall
Lever svar
Positive tall
Lever svar
Null
Lever svar
00:44
Hva kan p ofte representere i en ligning?
Et positivt tall
Lever svar
Et negativt tall
Lever svar
En brøkdel
Lever svar
00:53
Hva kan symbolet b representere i matematikk?
En bestemt konstant
Lever svar
Et vilkårlig tall
Lever svar
Et geometrisk objekt
Lever svar
01:01
Hva er en løsning på en ligning?
Et vilkårlig tall
Lever svar
Et tall som oppfyller ligningen
Lever svar
Et tall uten sammenheng
Lever svar
01:06
Hvorfor må p være positiv i en eksponentiell ligning?
Fordi logaritmen kun er definert for positive tall
Lever svar
Fordi negative tall er større
Lever svar
Fordi null er alltid løsningen
Lever svar
01:10
Hva brukes logaritmer til i matematikk?
Å finne eksponenten som gir et visst tall
Lever svar
Å addere tall
Lever svar
Å måle lengder
Lever svar
01:14
Hvis log x = a, hva er x?
x = a
Lever svar
x = 10^a
Lever svar
x = a/10
Lever svar
01:21
Hva betyr log x = a?
At x = a + 10
Lever svar
At 10^a = x
Lever svar
At a = x^10
Lever svar
01:33
Hvis log x = 3, hva er x?
3
Lever svar
10^3
Lever svar
1/10^3
Lever svar
01:50
Hvis log x = n, hva er x?
x = n
Lever svar
x = 10/n
Lever svar
x = 10^n
Lever svar
01:54
Hvordan kan vi sjekke om en løsning av en logaritmeligning er riktig?
Ved å sette verdien tilbake i ligningen
Lever svar
Ved å gjette
Lever svar
Ved å spørre noen andre
Lever svar
02:02
Hva krever logaritmen for å definere x?
At x er negativ
Lever svar
At x er positiv
Lever svar
At x er null
Lever svar
02:11
Hva er hovedregelen for logaritmer i base 10?
log x = a betyr at x = 10^a
Lever svar
log x = a betyr at x = a * 10
Lever svar
log x = a betyr at a = 1/x
Lever svar
02:25
Kan vi ta logaritmen av et negativt tall?
Nei, det går ikke
Lever svar
Ja, alltid
Lever svar
Bare hvis tallet er heltall
Lever svar
03:05
Kan logaritmeverdier være negative?
Ja, logaritmer kan være negative
Lever svar
Nei, aldri
Lever svar
Kun hvis x=1
Lever svar
03:26
Hva forteller en negativ logaritmeverdi om tallet?
At tallet ligger mellom 0 og 1
Lever svar
At tallet er større enn 10
Lever svar
At tallet er negativt
Lever svar
03:30
Hvis log x = -2, hva er x?
x = -2
Lever svar
x = 2
Lever svar
x = 10^-2
Lever svar
03:33
Hva betyr 10^-2?
100
Lever svar
0,01
Lever svar
0,1
Lever svar
03:48
Introduseres et tall i starten?
Nei
Lever svar
Ja
Lever svar
Bare et ord
Lever svar
00:00
Heter tallet e?
Ja
Lever svar
Nei
Lever svar
Kanskje
Lever svar
00:04
Er bokstaven liten e?
Ja
Lever svar
Nei
Lever svar
Usikker
Lever svar
00:08
Kalles tallet for Eulers tall?
Ja
Lever svar
Nei
Lever svar
Bare av og til
Lever svar
00:10
Er e definert som en grenseverdi?
Ja
Lever svar
Nei
Lever svar
Kun i noen tilfeller
Lever svar
00:28
Har e uendelig mange desimaler?
Ja
Lever svar
Nei
Lever svar
Bare et fåtall
Lever svar
00:44
Er e irrasjonalt?
Ja
Lever svar
Nei
Lever svar
Vet ikke
Lever svar
01:31
Er pi også irrasjonalt?
Ja
Lever svar
Nei
Lever svar
Kun rundt 3
Lever svar
01:37
Er pi selve tallet?
Ja
Lever svar
Nei, bare en tilnærming
Lever svar
Det er ikke et tall
Lever svar
01:47
Er pi knyttet til sirkler?
Ja
Lever svar
Nei
Lever svar
Kun til trekanter
Lever svar
01:56
Er kvadratroten av to irrasjonalt?
Ja
Lever svar
Nei
Lever svar
Vet ikke
Lever svar
02:01
Blir e nevnt igjen her?
Ja
Lever svar
Nei
Lever svar
Bare pi
Lever svar
02:06
Finnes det en funksjon kalt e opphøyd i x?
Ja
Lever svar
Nei
Lever svar
Bare ln x
Lever svar
02:08
Kan man huske e med assosiasjoner?
Ja
Lever svar
Nei
Lever svar
Bare med tall
Lever svar
02:38
Blir vinkler nevnt som en huskeregel?
Ja
Lever svar
Nei
Lever svar
Kun lengder
Lever svar
03:12
Må man huske disse assosiasjonene?
Nei
Lever svar
Ja
Lever svar
Bare for eksperter
Lever svar
03:17
Hvilket tall dreier videoen seg om?
e
Lever svar
pi
Lever svar
2
Lever svar
03:24
Er e opphøyd i x en eksponentialfunksjon?
Ja
Lever svar
Nei
Lever svar
Vet ikke
Lever svar
00:01
Hva kalles e opphøyd i x?
Naturlig logaritmefunksjon
Lever svar
Naturlig eksponentialfunksjon
Lever svar
Lineær funksjon
Lever svar
00:18
Har e opphøyd i x e som grunntall?
Ja
Lever svar
Nei
Lever svar
Usikker
Lever svar
00:30
Er e opphøyd i x en funksjon?
Ja
Lever svar
Nei
Lever svar
Vet ikke
Lever svar
00:44
Øker verdien av e opphøyd i x når x øker?
Ja
Lever svar
Nei
Lever svar
Bare av og til
Lever svar
00:47
Blir e opphøyd i x større fra x=1 til x=2?
Ja
Lever svar
Nei
Lever svar
Den halveres
Lever svar
00:52
Er e opphøyd i x en typisk eksponentialfunksjon?
Ja
Lever svar
Nei
Lever svar
Usikker
Lever svar
01:04
Er ln en logaritmefunksjon?
Ja
Lever svar
Nei
Lever svar
En polynomfunksjon
Lever svar
01:09
Må ln brukes på positive tall?
Ja
Lever svar
Nei
Lever svar
På alle tall
Lever svar
01:21
Beskriver en logaritme en eksponent?
Ja
Lever svar
Nei
Lever svar
Vet ikke
Lever svar
01:46
Er logaritmen av p eksponenten som gir p fra e?
Ja
Lever svar
Nei
Lever svar
Ingen sammenheng
Lever svar
01:50
Gjelder e^(ln(p)) = p?
Ja
Lever svar
Nei
Lever svar
Vet ikke
Lever svar
01:53
Er p bare et symbol for et positivt tall?
Ja
Lever svar
Nei
Lever svar
Vet ikke
Lever svar
02:01
Kan vi finne tilnærmingsverdier av ln(4) fra en graf?
Ja
Lever svar
Nei
Lever svar
Kun nøyaktige verdier
Lever svar
02:05
Er ln(4) eksponenten som gir 4 fra e?
Ja
Lever svar
Nei
Lever svar
Avhenger av tallet
Lever svar
02:13
Er 4 et positivt tall?
Ja
Lever svar
Nei
Lever svar
Vet ikke
Lever svar
02:19
Må man ofte lese av verdier på en graf?
Ja
Lever svar
Nei
Lever svar
Aldri
Lever svar
02:27
Kan ln(4) være omtrent 1,38?
Ja
Lever svar
Nei
Lever svar
Nøyaktig 2
Lever svar
02:30
Er ln(4) en irrasjonell verdi?
Ja
Lever svar
Nei
Lever svar
Vet ikke
Lever svar
02:37
Er ln(e) = 1?
Ja
Lever svar
Nei
Lever svar
Vet ikke
Lever svar
02:45
Er ln(e) = 1?
Ja
Lever svar
Nei
Lever svar
Vet ikke
Lever svar
02:53
Er e omtrent 2,718?
Ja
Lever svar
Nei
Lever svar
10
Lever svar
02:55
Gir ln(e) = 1?
Ja
Lever svar
Nei
Lever svar
Vet ikke
Lever svar
02:59
Er e^0 = 1?
Ja
Lever svar
Nei
Lever svar
e
Lever svar
03:02
Er alle tall i nullte potens 1?
Ja
Lever svar
Nei
Lever svar
Kun e
Lever svar
03:10
Er eksponenten for å få 1 fra e lik 0?
Ja
Lever svar
Nei
Lever svar
Vet ikke
Lever svar
03:16
Gjelder e^0 = 1?
Ja
Lever svar
Nei
Lever svar
Alltid 0
Lever svar
03:20
Er ln(e²) = 2?
Ja
Lever svar
Nei
Lever svar
Vet ikke
Lever svar
03:25
Hva skal denne videoen hovedsakelig handle om?
En spesiell type likning
Lever svar
Musikkteori
Lever svar
Historiske begivenheter
Lever svar
00:00
Har løsningen allerede blitt vist?
Ja
Lever svar
Nei
Lever svar
Bare delvis
Lever svar
00:06
Hva representerer ln vanligvis?
En naturlig logaritme
Lever svar
En polynomfunksjon
Lever svar
Et geometrisk mål
Lever svar
00:11
Kan definisjonen av ln være nyttig i forskjellige oppgaver?
Ja
Lever svar
Nei
Lever svar
Kun i sjeldne tilfeller
Lever svar
00:54
Gir bruk av logaritmer mulighet til å løse flere typer ligninger?
Ja, helt klart
Lever svar
Nei, aldri
Lever svar
Bare for lineære likninger
Lever svar
00:58
Hvis e^x = en positiv verdi, kan x finnes ved hjelp av ln?
Ja
Lever svar
Nei
Lever svar
Bare om tallet er større enn 1
Lever svar
01:02
Blir x positiv eller negativ når e^x er en halv?
Positiv
Lever svar
Negativ
Lever svar
Lik null
Lever svar
01:25
Er en halv et eksempel på en positiv verdi?
Ja
Lever svar
Nei
Lever svar
Bare i spesielle tilfeller
Lever svar
01:43
Hva blir x hvis e^x = a?
x = ln(a)
Lever svar
x = 1 / a
Lever svar
x = a^2
Lever svar
01:46
Blir ln(1/2) et negativt tall?
Ja
Lever svar
Nei
Lever svar
Den blir alltid større enn 1
Lever svar
01:49
Kan vi bruke samme metode når e^x = 6?
Ja, vi tar ln(6)
Lever svar
Nei, vi må bruke kvadratrot
Lever svar
Ikke uten digitalt verktøy
Lever svar
01:56
Blir ln(6) rundt 1.8?
Ja
Lever svar
Nei
Lever svar
Den er alltid større enn 5
Lever svar
02:09
Hva er den riktige verdien av x hvis e^x = 6?
x = 6
Lever svar
x = ln(6)
Lever svar
x = 0
Lever svar
02:16
Finnes det en reell løsning når e^x skal være negativ?
Nei, ingen løsning
Lever svar
Ja, om x er stor nok
Lever svar
Bare når x er lik null
Lever svar
02:29
Er e^x alltid positiv for alle reelle x?
Ja
Lever svar
Nei
Lever svar
Bare for x over 1
Lever svar
02:35
Kan et uttrykk som e^(2x) - 2 e^x - 3 = 0 behandles som en andregradslikning?
Ja, ved å sette y = e^x
Lever svar
Nei, aldri
Lever svar
Bare i spesielle tilfeller
Lever svar
02:54
Kan abc-formelen brukes på slike «kamuflerte» andregradslikninger?
Ja
Lever svar
Nei
Lever svar
Kun med grafisk verktøy
Lever svar
03:23
Hva blir x hvis e^x = 3?
x = ln(3)
Lever svar
x = 3^e
Lever svar
x = -3
Lever svar
03:32
Har e^x = -1 noen reell løsning?
Nei
Lever svar
Ja, alltid
Lever svar
Ja, men bare i komplekse tall
Lever svar
03:49
Er e^(2x) det samme som (e^x)²?
Ja
Lever svar
Nei
Lever svar
Bare for x = 1
Lever svar
04:05
Kan slike e^x-likninger ofte løses med faktorisering?
Ja
Lever svar
Nei
Lever svar
Bare hvis x er null
Lever svar
04:11
Hvilken type ligning nevnes?
Eksponentiell
Lever svar
Logaritmisk
Lever svar
Lineær
Lever svar
00:00
Hva studeres i denne sekvensen?
Løsning av en ligning
Lever svar
Lesing av en tekst
Lever svar
Analyse av en tabell
Lever svar
00:06
Hva beskriver logaritmen?
Tallet man må opphøye i for å få et annet tall
Lever svar
Tallet man trekker fra et annet tall
Lever svar
Antall siffer i en desimal
Lever svar
00:10
Hva er gitt for X?
At logaritmen til X er B
Lever svar
At X må være negativ
Lever svar
At X må være et heltall
Lever svar
00:21
Hva innebærer denne logaritmelikningen?
Et tall må opphøyes til noe
Lever svar
Et tall må ganges med noe
Lever svar
Et tall må subtraheres
Lever svar
00:31
Hvilket sentralt tall brukes?
e
Lever svar
2
Lever svar
10
Lever svar
00:38
Hva tilsvarer B her?
Eksponenten
Lever svar
Koeffisienten
Lever svar
Divisor
Lever svar
00:50
Hva betyr ln x = -1?
X = e
Lever svar
X = e⁻¹
Lever svar
X = 0
Lever svar
01:03
Hva kan e⁻¹ også skrives som?
1/e
Lever svar
e + 1
Lever svar
e × 2
Lever svar
01:10
Omtrent hvor stor er e⁻¹?
Cirka en tredel
Lever svar
Cirka to
Lever svar
Cirka fem
Lever svar
01:33
Hvilken desimalverdi nevnes for e⁻¹?
Omtrent 0,3
Lever svar
Omtrent 3,0
Lever svar
Omtrent 1,0
Lever svar
01:37
Hva foreslås for mer nøyaktig verdi?
Håndberegning
Lever svar
Kalkulator
Lever svar
Målebånd
Lever svar
01:41
Hva gir et mer presist tall?
Beregning med verktøy
Lever svar
Ren gjetning
Lever svar
Omtrentlig avrunding
Lever svar
01:46
Hvilken eksponentiell form nevnes her?
e⁻¹
Lever svar
Lever svar
10¹
Lever svar
01:56
Hvilken verdi nevnes for e⁻¹?
0,37
Lever svar
3,7
Lever svar
37
Lever svar
02:00
Var denne tilnærmingen riktig?
Ja
Lever svar
Nei
Lever svar
Bare delvis
Lever svar
02:04
Hvilken ligning introduseres?
2 ln x = 3
Lever svar
ln x = -1
Lever svar
2 + 2 = 4
Lever svar
02:08
Hva gjøres for å forenkle 2 ln x = 3?
Dele på to
Lever svar
Gange med to
Lever svar
Trekke fra to
Lever svar
02:17
Hva blir ln x når det deles på to?
3/2
Lever svar
2/3
Lever svar
3/4
Lever svar
02:24
Hva blir X ifølge transkripsjonen?
e^(3/2)
Lever svar
Lever svar
e⁻³
Lever svar
02:34
Hvilket annet svar sies også å være helt ok?
e⁻¹
Lever svar
10²
Lever svar
Lever svar
02:37
Hva kalles funksjoner av typen a^x?
Polynomfunksjoner
Lever svar
Eksponentialfunksjoner
Lever svar
Logaritmefunksjoner
Lever svar
00:00
Hvilket grunntall brukes ofte i eksponentialfunksjoner?
10
Lever svar
2
Lever svar
e
Lever svar
00:09
Kan en funksjon med basen e skrives som e^(k·x)?
Ja
Lever svar
Nei
Lever svar
Kun for x > 0
Lever svar
00:17
Hvilken logaritme hører til basen e?
log10
Lever svar
log2
Lever svar
ln
Lever svar
00:28
Er a^x det samme som e^(ln(a)·x)?
Ja
Lever svar
Nei
Lever svar
Bare for a = 5
Lever svar
00:41
Kan en potens opphøyes på nytt i x?
Ja, vi kan gange eksponentene
Lever svar
Nei, aldri
Lever svar
Kun hvis a > 1
Lever svar
00:53
Gir potensreglene oss (a^b)^c = a^(b·c)?
Ja
Lever svar
Nei
Lever svar
Kun for negative tall
Lever svar
00:57
Kan (a^b)^x skrives som a^(b·x)?
Ja, det følger av potensregler
Lever svar
Nei
Lever svar
Bare med a = e
Lever svar
01:00
Er parenteser viktige i algebra?
Ja
Lever svar
Nei
Lever svar
Kun i kompliserte uttrykk
Lever svar
01:12
Kan ln(a) finnes med en kalkulator?
Ja
Lever svar
Nei
Lever svar
Bare hvis a = 5
Lever svar
01:17
Er ln(5) omtrent 1,6?
Ja
Lever svar
Nei
Lever svar
Bare ved negative tall
Lever svar
01:31
Kan ln(5) fungere som en konstant i eksponentialfunksjoner?
Ja
Lever svar
Nei
Lever svar
Bare i base 10
Lever svar
01:45
Kan e^(5x) skrives som (e^5)^x?
Ja
Lever svar
Nei
Lever svar
Kun hvis x=5
Lever svar
01:50
Ønsker man noe i formen a^x, kan e^(k·x) skrives som (e^k)^x?
Ja
Lever svar
Nei
Lever svar
Kun ved k > 1
Lever svar
01:59
Hvilken regel ligger til grunn for (e^k)^x = e^(k·x)?
Potensregel
Lever svar
Brøkregel
Lever svar
Logaritmeregel
Lever svar
02:03
Er e^5 en konstant?
Ja
Lever svar
Nei
Lever svar
Kun hvis e = 1
Lever svar
02:14
Kan e^5 regnes ut numerisk?
Ja
Lever svar
Nei
Lever svar
Bare ln(5)
Lever svar
02:22
Er e^5 større enn 100?
Ja
Lever svar
Nei
Lever svar
Akkurat 100
Lever svar
02:28
Er e^5 omtrent 148,4?
Ja
Lever svar
Nei
Lever svar
2,718
Lever svar
02:34
Kan e^(5x) tilnærmes av en konstant opphøyd i x?
Ja
Lever svar
Nei
Lever svar
Av og til
Lever svar
02:49
Endrer en fast faktor foran a^x selve basen?
Nei
Lever svar
Ja
Lever svar
Av og til
Lever svar
02:55
Hvis vi har k·a^x, forandres basen a?
Nei
Lever svar
Ja
Lever svar
Kun ved store k
Lever svar
03:19
logalog{a} er definert som:
Det tall man må opphøye 10 i for å få a
Lever svar
Det tall man må opphøye a i for å få 10
Lever svar
Det tall man må opphøye a i for å få 1
Lever svar
×
Tilbakestill oppgaven som uløst
×
Tilbakestill oppgaven som uløst
×
Tilbakestill oppgaven som uløst
Hva er ikke riktig når det gjelder tallet e ?
Det er lik ca 2,718
Lever svar
ln e = 0
Lever svar
ln e = 1
Lever svar
×
Tilbakestill oppgaven som uløst
×
Tilbakestill oppgaven som uløst
×
Tilbakestill oppgaven som uløst
Hvordan defineres ln3ln 3 ?
Det tallet e må opphøyes i for at vi skal få 3
Lever svar
Det er lik e3e^3
Lever svar
Det tallet 3 må opphøyes i for at vi skal få e
Lever svar
×
Tilbakestill oppgaven som uløst
×
Tilbakestill oppgaven som uløst
×
Tilbakestill oppgaven som uløst
Hvis ex=10e^x = 10 , så er .. ?
x = 1
Lever svar
x = ln 10
Lever svar
x=e10x = e^{10}
Lever svar
×
Tilbakestill oppgaven som uløst
×
Tilbakestill oppgaven som uløst
×
Tilbakestill oppgaven som uløst
Hvis lnx=7\ln {x} = 7 så er .. ?
x=ln7x = \ln {7}
Lever svar
x=ln7ln1x = \frac{\ln 7}{\ln 1}
Lever svar
x=e7x= e^7
Lever svar
×
Tilbakestill oppgaven som uløst
×
Tilbakestill oppgaven som uløst
×
Tilbakestill oppgaven som uløst
5x5^x kan også skrives
5ex5 e^x
Lever svar

ekxe^{kx} , der k=ln5k = ln 5

Lever svar
ln5exln 5 \cdot e^x
Lever svar
×
Tilbakestill oppgaven som uløst
×
Tilbakestill oppgaven som uløst
×
Tilbakestill oppgaven som uløst
Hvis 10x=710^x = 7 så er
x=log7x=\log {7}
Lever svar
logx=7\log x = 7
Lever svar
x=7x = 7
Lever svar
×
Tilbakestill oppgaven som uløst
×
Tilbakestill oppgaven som uløst
×
Tilbakestill oppgaven som uløst
log1000\log {1000} er:
3
Lever svar
10
Lever svar
ca 17,34
Lever svar
×
Tilbakestill oppgaven som uløst
×
Tilbakestill oppgaven som uløst
×
Tilbakestill oppgaven som uløst
Hva vil vi at Spyder skal gjøre når differansen mellom a og 10b10^{b} er stor?
Lete etter en bedre verdi for b
Lever svar
Stoppe koden vår
Lever svar
Alltid øke verdien til b
Lever svar
×
Tilbakestill oppgaven som uløst
×
Tilbakestill oppgaven som uløst
×
Tilbakestill oppgaven som uløst