×
VGS matematikk
1 - 2 - 3 klasse

Lær VGS matten fra A til Å
med de beste metodene

Enkelt å
holde fokus

Forstå det
vanskelige

Få god
oversikt

Øv på
riktig tema

Få hjelp når
du stopper opp

Anne-Lise Frivold Svendsen

Flott opplegg og undervisning😊

Karina Tellmann Marthinussen

Tusen takk!

Ruben Flatås

Gjorde unna R2 som privatist på et halvt år!! Mattevideo har gjort det mye lettere å fordøye et så tungt pensum på så kort tid. Tusen takk for hjelpa!!😊

Vilde Ågotnes

Bra undervisning!

Hamdi A Ahmed

Jeg er fornøyd med videone deres det har hjulpet meg til å bestå matten i både Vgs og Uni . Så takk😊

Halvard Balto

Meget bra!

Halil Ibrahim Keser

Tusen takk. Veldig flink lærer. Gode forklaringer.

Marte Forsberg

Helt topp :D

Jon Mills

Bra side.

Kirsti Beate Årsandøy

Kjempebra!😊

Mari Bertelsen

Bra side. Veldig gode forklaringer😊

Selma Voss

Tror dette kommer til å redde meg på noen prøver fremover. Takk! :D

Caja Magnussen

takk for hjelpen

Abdi Omar

Takk for læreren av denne siden. Det er utrolig en bra side, fikk meg mye. Tusen hjertelig takk

Olav Lunde Arneberg

Kan trygt anbefale Arne Hovland! Beste læreren jeg har hatt i løpet av drøyt 20 år med utdanning.

Daniel Gabrielsen

takk for denne siden :D min 1T mattelærer snakker så monotont og gjør matte så kjedelig at interessen svinner vekk og jeg sovner etter 5 minutter.

Kassi 17 år - har eksamen i R1 til våren.
Min lærer går litt for raskt gjennom r1 pensum, noe som gjør at jeg trenger repetisjon av de vanskeligste emnene...les mer
Liam 34 år - har eksamen i R2 til jul.
Jeg kjøpte medlemskap fordi jeg ønsket forklaring via video og tilgang på "lærer" hele døgnet. Mattevideo er...les mer
Oda 16 år - har eksamen i 1T til våren.
Jeg ble abonnement hos mattevideo fordi jeg slet med å forstå pensum i 1T. Jeg ønsket å prøve, for å se...les mer
Nicolai 21 år - har eksamen i R2 til sommeren.
Jeg ble medlem for å forbedre meg, og gå dypere inn i spesifikke temaer. Jeg går i 10. klasse og tar forsert løp...les mer
Daniel 15 år - har eksamen i 1t til våren.
Jeg ble medlem for å forbedre meg, og gå dypere inn i spesifikke temaer. Jeg går i 10. klasse og tar forsert løp...les mer
June 20 år - preppet til eksamen.
Jeg brukte mattevideo da jeg måtte ta opp igjen eksamen, selvlært. Min gamle lærer gjorde det veldig vanskelig å henge med...les mer
Velg ditt fag
S1 er et studieretningsfag på Vg2-nivå. S1 står for "Samfunnsfaglig matematikk".
Hele læreplan fra A til Å
Videoundervsining alle temaer
Korte og effektive selvtester
Vi gjennomgår eksamen
Organiser temaene etter ønsket lærebok
Kapittelinndeling: Mattevideo.no S1
×
Organiser innholdet etter din lærebok
Organiser videoer med ønskede ikoner
Organiser selvtester med ønskede ikoner
Litt repetisjon
, curr: s1, book: 1546
12:37
18:38
25:55
21:34
34:11
25:05
14:39
15:51
29:06
20:52
Logaritmeregning
, curr: s1, book: 1546
31:02
19:21
36:19
09:10
17:37
35:27
15:40
17:22
19:08
Grenseverdier og kontinuitet i funksjoner
, curr: s1, book: 1546
12:55
05:03
66:44
08:47
07:03
11:44
25:42
27:48
Derivasjon i funksjoner
, curr: s1, book: 1546
39:45
22:20
05:59
05:32
31:41
08:34
14:23
20:02
32:15
15:37
29:37
14:31
Sannsynlighetsregning
, curr: s1, book: 1546
12:42
35:08
08:50
25:35
33:12
21:09
38:28
12:11
30:26
Modellering og regresjon
, curr: s1, book: 1546
26:58
23:10
Eksamenstid 5 timer Del 1 (Uten hjelpemidler) skal leveres etter 2 timer. Del 2 (Med hjelpemidler) skal leveres etter senest 5 timer.
DEL 1 - Uten hjelpemidler

Oppgave 1 (5 poeng)

  Løs likningene

a) 2x25x+1=x32x^2 - 5x + 1 = x - 3

 

b) 2lg(x+7)=42 \cdot \lg{(x+7)} = 4

 

c) 323x+2=12263 \cdot 2^{3x + 2} = 12 \cdot 2^6

   

Oppgave 2 (2 poeng)

 
Løs likningssystemet

[x2+3y=73xy=1]\begin{bmatrix} x^2 + 3y = 7 \\ 3x - y = 1 \end{bmatrix}

Oppgave 3 (6 poeng)

  Skriv så enkelt som mulig

a) (2x3)22x(2x6)(2x-3)^2 -2x(2x-6)

 

b) lg2a+lg4a+lg8alg16a\lg{2a} + \lg{4a} + \lg{8a} - \lg{16a}

 

c) 1a+1babab\frac{1}{a} + \frac{1}{b} - \frac{a-b}{ab}

Oppgave 4 (2 poeng)

 
Løs ulikheten

x23x+20x^2 - 3x + 2 \geq 0

Oppgave 5 (5 poeng)

 

a) Skriv ned de åtte første radene i Pascals talltrekant.

I en eske ligger det 3 røde og 4 blå kuler. Tenk deg at du skal trekke tilfeldig 3 kuler uten tilbakelegging.  

b) Bestem sannsynligheten for at du trekker tre blå kuler.

 

c) Bestem sannsynligheten for at det er både røde og blå kuler blant de tre kulene du trekker.

 

Oppgave 6 (2 poeng)

 
Skraver området som er avgrenset av ulikhetene nedenfor, i et koordinatsystem.

x0x \geq 0

y8y \leq 8

x+y10x + y \leq 10

3x2y23x - 2y \leq -2

Oppgave 7 (4 poeng)

  Funksjonen f er gitt ved

f(x)=2x1x+2 , x2f(x) = \frac{2x - 1}{x + 2} \ , \ x \neq 2

 
a) Lag en skisse av grafen til f .  
b) Løs likningen f(x)=x2f(x) = x - 2  

Oppgave 8 (7 poeng)

  Funksjonen g er gitt ved

g(x)=2x3+3x212xg(x) = 2x^3+3x^2-12x

a) Bestem g(x)g'(x)  
b) Bestem toppunktet og bunnpunktet på grafen til g.  
c) Bestem den gjennomsnittlige vekstfarten til g i intervallet [0, 2].  
d) Bestem de punktene på grafen der den momentane vekstfarten er 24.  

Oppgave 9 (3 poeng)

  Nedenfor ser du fortegnslinjen til f(x)f'(x), for en funksjon f.

 
a) Bruk fortegnslinjen til å bestemme hvor grafen til f stiger, og hvor den synker.  
b) Lag en skisse som viser hvordan grafen til f kan se ut.
DEL 2 - Med hjelpemidler  

Oppgave 1 (3 poeng)

  Einar er fiskehandler. Han selger torsk og sei. En dag solgte han 110 kg torsk og 200 kg sei. Han fikk 6795 kroner. Dagen etter solgte han 150 kg torsk og 230 kg sei. For dette fikk han 8390 kroner.
Sett opp et likningssystem, og bruk CAS til å bestemme hvilken pris Einar fikk per kilogram for torsken, og hvilken pris han fikk per kilogram for seien.  

Oppgave 2 (6 poeng)

  Et flyselskap har en flyrute mellom Oslo og Bergen. Flyene som brukes, har plass til 116 passasjerer. Sannsynligheten for at en passasjer som har kjøpt billett, ikke møter til flyavgang, er 6 %. Vi lar X være antall passasjerer som møter til en tilfeldig valgt flyavgang.

a) Hva må vi forutsette for å kunne bruke en binomisk sannsynlighetsmodell i denne situasjonen?

I resten av denne oppgaven går vi ut fra at X er binomisk fordelt.

b) Til en flyavgang er det solgt 122 billetter. Bestem sannsynligheten for at alle som møter, får plass på flyet.

Flyselskapet ønsker at sannsynligheten skal være minst 95 % for at alle som møter, skal få plass på flyet.

c) Hvor mange billetter kan flyselskapet maksimalt selge da?

Oppgave 3 (7 poeng)

  Frode og Peter lager to typer fuglekasser. Type A er for meiser, og type B er for ugler. Frode lager delene til kassene, mens Peter setter dem sammen og maler dem.
  • Frode bruker 10 minutter på å lage delene til en kasse av type A og 30 minutter på å lage delene til en kasse av type B.
  • Peter bruker 20 minutter på å sette sammen og male en kasse av type A og 30 minutter på en kasse av type B.
  • I løpet av en uke kan Frode jobbe 15 timer.
  • I løpet av en uke kan Peter jobbe 20 timer.
De produserer x kasser av type A og y kasser av type B.

a) Forklar at x og y må ligge i området som er avgrenset av ulikhetene nedenfor:

x0,y0x \geq 0 , y \geq 0

x+3y90x + 3y \leq 90

2x+3y1202x + 3y \leq 120

 

b) Skraver dette området i et koordinatsystem.

Når de selger fuglekassene, har de en fortjeneste på 60 kroner for en kasse av type A og 150 kroner for en kasse av type B.

c) Hvor mange kasser bør de produsere av hver type for at fortjenesten skal bli størst mulig?

Etterspørselen etter fuglekasser av begge typer er veldig stor, så Frode sier han kan jobbe 3 timer ekstra en uke.

d) Hvor mange kasser bør de produsere av hver type denne uken dersom de vil ha størst mulig fortjeneste?

Oppgave 4 (8 poeng)

  Arne har sommerjobb som montør i en bedrift som produserer en bestemt type pumper. Han har lagt merke til at arbeidstempoet endrer seg i løpet av dagen. En dag teller han opp annenhver time hvor mange pumper han har montert så langt den dagen. Tabellen nedenfor viser resultatet

 

a) Bruk regresjon til å lage et tredjegradspolynom g som kan brukes som modell for hvor mange pumper Arne setter sammen i løpet av de x første timene på jobb en dag.

I resten av oppgaven lar vi funksjonen f gitt ved

f(x)=0,26x3+2,8x2+16x,0x9f(x)=-0,26x^3 + 2,8x^2 + 16x , 0 \leq x \leq 9

være en modell for antall pumper Arne klarer å montere i løpet av de x første timene på jobb en dag.

b) Bruk graftegner til å tegne grafen til f i et koordinatsystem.

Arne kan velge om han vil ha 9 kroner per pumpe han monterer, eller 190 kroner per time han jobber.

c) Hvor mange timer må han jobbe på én dag for at det skal lønne seg å velge betaling per montert pumpe?

d) Hvor mange timer må han jobbe én dag for at forskjellen på lønn per pumpe og lønn per time skal bli størst mulig?

 
Gratis Prøvesmak
Superteknikker
En til en veiledning
S1
 - Kapittelinndeling: Mattevideo.no S1 (oppdatert læreplan)
 - Sannsynlighetsregning
 - Kombinatorikk - antall kombinasjoner
×
05:51
Teori 2
Vi definerer ordnede utvalg. Det finnes ordnede utvalg både med og uten tilbakelegging, du får se eksempler på begge typene. Ordnede utvalg
×
02:14
Teori 1
Kombinatorikk - Multiplikasjonsregelen

r1_2536
02:46
Teori 3
Orden internt i et utvalg. n!
03:59
Teori 4
Uordnede utvalg. Her får du se hvorfor det blir (53)\binom{5}{3} mulige grupper når vi trekker et uordnet utvalg på 3 fra en populasjon på 5.
06:19
Teori 5
Binomialkoeffisienten. Her ser du hvordan man regner ut binomialkoeffisienter. r1_2553
03:22
Oppgave 1
Hvor mange ulike bilnummer kan man lage?
01:38
Oppgave 2
Tippekupongen - hvor mange forskjellige rekker kan tippes?
06:01
Oppgave 3
På hvor mange måter kan 12 elever plassere seg i et klasserom med
   a) 12 pulter og
   b) 15 pulter
02:39
Oppgave 4
En flervalgsprøve har ti spørsmål, med fire svaralternativer på hvert spørsmål.
   a) Hvor mange svarkombinasjoner er mulige?
   b) Hva er P(alt riktig) hvis du må tippe på alle spørsmålene?
03:47
Oppgave 5
Blindtest cola. Du får smake på 4 forskjellige typer cola, uten å se hvilken du drikker. Hva er sannsynligheten for å treffe på alle 4 typene bare ved å gjette?
01:53
Oppgave 6
En kode består av 4 tegn. Det første tegnet er et siffer som ikke er null. Det andre er et hvilket som helst siffer. Det tredje må være en stor bokstav. Det fjerde må være en stor vokal. - Hvor mange kombinasjoner er mulige? 
05:25
Oppgave 7
Vi øver på å regne binomialkoeffisienter.
02:56
Oppgave 8
Fra en klasse med 30 elever trekkes det ut 5 elever som må rydde søppel i gangen. Hvor mange grupper kan lages?
06:08
Oppgave 9
I old school poker får man utdelt 5 kort.
   a) Hvor mange ulike kombinasjoner (hender) er det mulig å få utdelt?
   b) Har man 5 kort i samme "farge" (f.eks hjerter) har man flush.
        Hva er sannsynligheten for å få utdelt flush? 
04:39
Oppgave 10
Når man tipper en enkeltrekke i lotto, krysser man av 7 av tallene 1 til 34. Dersom de samme 7 tallene trekkes ut har man 7 rette.
   a) Hvor mange enkeltrekker er det mulig å krysse av?
   b) Man kan tippe "system", og krysse av mer enn 7 tall,
       for eksempel 9 tall.
     1) Hvor mange enkeltrekker svarer dette til?
     2) Hva er sannsynligheten for å få 7 rette
         når man krysser av 9 kryss. 
Skjul video ▼
Vis video ▲
Selvtester og oppgaver for mengdetrening
10 sekunders quiz
Eksamensoppgaver
×
Hva omhandler kombinatorikk?
Å telle muligheter
Lever svar
Å finne antall kombinasjoner
Lever svar
Å sortere tall
Lever svar
00:00
Hva beskriver en flertrinnsprosess?
En prosess med ett valg
Lever svar
En prosess med flere påfølgende steg
Lever svar
En prosess uten rekkefølge
Lever svar
00:23
Hvordan finner man antall kombinasjoner i flere trinn?
Man multipliserer antall muligheter for hvert trinn
Lever svar
Man legger sammen antall muligheter
Lever svar
Man trekker fra antall muligheter
Lever svar
01:09
Gjelder samme regel for flere enn tre trinn?
Ja, for et vilkårlig antall trinn
Lever svar
Nei, kun for to trinn
Lever svar
Nei, kun for tre trinn
Lever svar
01:44
Hva får man ved å gange antall muligheter for hvert trinn?
Det totale antallet kombinasjoner
Lever svar
Et vilkårlig tall
Lever svar
Kun mulighetene i første trinn
Lever svar
01:48
Du skal sette sammen et antrekk bestående av bukse, t-skjorte og jakke. Du kan velge mellom 4 bukser, 6 T-skjorter og 2 jakker. Antall mulige kombinasjoner er da:
3
Lever svar
12
Lever svar
48
Lever svar
×
Tilbakestill oppgaven som uløst
×
Tilbakestill oppgaven som uløst
×
Tilbakestill oppgaven som uløst

Elevene på Vg1 må velge fag for Vg2. Camilla vil ha realfag som sitt programområde og må derfor velge minst to realfag. Skolen tilbyr fem realfag og åtte fag fra andre programområder.

a) Hvor mange fagkombinasjoner er mulig dersom hun skal ha to realfag og to andre fag?

b) Camilla skal velge fire fag. Hvor mange fagkombinasjoner er mulig dersom minst to av fagene skal være realfag?

280280

Lever svar

1010

Lever svar

44

Lever svar
×
Tilbakestill oppgaven som uløst
×
Tilbakestill oppgaven som uløst
×
Tilbakestill oppgaven som uløst

I TV-programmet «Mesternes mester» er det 10 deltakere. Det er 5 kvinner og 5 menn. Deltakerne konkurrerer mot hverandre og blir slått ut én etter én. Til slutt er det tre deltakere igjen. Disse tre er i finalen.


a) Hvor mange ulike grupper på tre deltakere kan komme til finalen?


b) Hvor mange av gruppene du fant i oppgave a), inneholder flere kvinner enn menn?

120120

Lever svar

604800604800

Lever svar

7

Lever svar
×
Tilbakestill oppgaven som uløst
×
Tilbakestill oppgaven som uløst
×
Tilbakestill oppgaven som uløst
Hva er betydelig for et ordnet utvalg?
Rekkefølgen
Lever svar
At vi tilbakelegger
Lever svar
At vi ikke tilbakelegger
Lever svar
×
Tilbakestill oppgaven som uløst
×
Tilbakestill oppgaven som uløst
×
Tilbakestill oppgaven som uløst
Hva er forskjellen på ordnet og uordnet utvalg?
I ordnet utvalg har vi tilbakelegging
Lever svar
I uordnet utvalg har vi tilbakelegging
Lever svar
I uordnet utvalg er rekkefølgen ubetydelig
Lever svar
×
Tilbakestill oppgaven som uløst
×
Tilbakestill oppgaven som uløst
×
Tilbakestill oppgaven som uløst
Hva blir 4 !?
16
Lever svar
4 * 3 * 2 * 1 * 0
Lever svar
24
Lever svar
×
Tilbakestill oppgaven som uløst
×
Tilbakestill oppgaven som uløst
×
Tilbakestill oppgaven som uløst
Hva blir 3 ! ?
3
Lever svar
6
Lever svar
9
Lever svar
×
Tilbakestill oppgaven som uløst
×
Tilbakestill oppgaven som uløst
×
Tilbakestill oppgaven som uløst

Elevene på Vg1 må velge fag for Vg2. Camilla vil ha realfag som sitt programområde og må derfor velge minst to realfag. Skolen tilbyr fem realfag og åtte fag fra andre programområder.

a) Hvor mange fagkombinasjoner er mulig dersom hun skal ha to realfag og to andre fag?

b) Camilla skal velge fire fag. Hvor mange fagkombinasjoner er mulig dersom minst to av fagene skal være realfag?

Se løsning og registrer oppgaven
×