×
VGS matematikk
1 - 2 - 3 klasse

Lær VGS matten fra A til Å
med de beste metodene

Enkelt å
holde fokus

Forstå det
vanskelige

Få god
oversikt

Øv på
riktig tema

Få hjelp når
du stopper opp

Anne-Lise Frivold Svendsen

Flott opplegg og undervisning😊

Karina Tellmann Marthinussen

Tusen takk!

Ruben Flatås

Gjorde unna R2 som privatist på et halvt år!! Mattevideo har gjort det mye lettere å fordøye et så tungt pensum på så kort tid. Tusen takk for hjelpa!!😊

Vilde Ågotnes

Bra undervisning!

Hamdi A Ahmed

Jeg er fornøyd med videone deres det har hjulpet meg til å bestå matten i både Vgs og Uni . Så takk😊

Halvard Balto

Meget bra!

Halil Ibrahim Keser

Tusen takk. Veldig flink lærer. Gode forklaringer.

Marte Forsberg

Helt topp :D

Jon Mills

Bra side.

Kirsti Beate Årsandøy

Kjempebra!😊

Mari Bertelsen

Bra side. Veldig gode forklaringer😊

Selma Voss

Tror dette kommer til å redde meg på noen prøver fremover. Takk! :D

Caja Magnussen

takk for hjelpen

Abdi Omar

Takk for læreren av denne siden. Det er utrolig en bra side, fikk meg mye. Tusen hjertelig takk

Olav Lunde Arneberg

Kan trygt anbefale Arne Hovland! Beste læreren jeg har hatt i løpet av drøyt 20 år med utdanning.

Daniel Gabrielsen

takk for denne siden :D min 1T mattelærer snakker så monotont og gjør matte så kjedelig at interessen svinner vekk og jeg sovner etter 5 minutter.

Kassi 17 år - har eksamen i R1 til våren.
Min lærer går litt for raskt gjennom r1 pensum, noe som gjør at jeg trenger repetisjon av de vanskeligste emnene...les mer
Liam 34 år - har eksamen i R2 til jul.
Jeg kjøpte medlemskap fordi jeg ønsket forklaring via video og tilgang på "lærer" hele døgnet. Mattevideo er...les mer
Oda 16 år - har eksamen i 1T til våren.
Jeg ble abonnement hos mattevideo fordi jeg slet med å forstå pensum i 1T. Jeg ønsket å prøve, for å se...les mer
Nicolai 21 år - har eksamen i R2 til sommeren.
Jeg ble medlem for å forbedre meg, og gå dypere inn i spesifikke temaer. Jeg går i 10. klasse og tar forsert løp...les mer
Daniel 15 år - har eksamen i 1t til våren.
Jeg ble medlem for å forbedre meg, og gå dypere inn i spesifikke temaer. Jeg går i 10. klasse og tar forsert løp...les mer
June 20 år - preppet til eksamen.
Jeg brukte mattevideo da jeg måtte ta opp igjen eksamen, selvlært. Min gamle lærer gjorde det veldig vanskelig å henge med...les mer
Velg ditt fag
R1 er et studieretningsfag på Vg2-nivå. R1 står for "Realfaglig matematikk".
Hele læreplan fra A til Å
Videoundervsining alle temaer
Korte og effektive selvtester
Vi gjennomgår eksamen
Organiser temaene etter ønsket lærebok
Kapittelinndeling: Mattevideo.no R1
×
Organiser innholdet etter din lærebok
Organiser videoer med ønskede ikoner
Organiser selvtester med ønskede ikoner
Vektorer
, curr: r1, book: 666
06:24
06:24
11:47
13:07
07:40
21:39
11:43
05:06
12:33
15:36
25:28
45:46
06:09
19:30
Algebra
, curr: r1, book: 666
45:37
21:34
34:11
14:46
12:27
25:44
12:43
18:02
23:23
16:53
08:23
16:45
27:26
12:31
12:52
19:38
16:19
Sannsynlighetsregning
, curr: r1, book: 666
16:30
14:09
09:04
25:50
16:34
09:11
10:54
07:47
02:14
05:00
08:37
09:48
10:18
19:08
12:11
30:26
15:52
Funksjoner
, curr: r1, book: 666
04:36
25:20
13:42
24:42
34:39
41:48
04:21
25:15
26:41
Mer om funksjoner
, curr: r1, book: 666
18:36
17:11
28:04
22:27
34:18
14:51
01:21
13:23
07:48
11:50
Klassisk geometri
, curr: r1, book: 666
25:51
30:06
09:22
19:16
19:11
33:22
09:17
15:54
Eksamenstid 5 timer Del 1 (Uten hjelpemidler) skal leveres etter 2 timer. Del 2 (Med hjelpemidler) skal leveres etter senest 5 timer.

Oppgave 1 (5 poeng)

  Deriver funksjonene

a) f(x)=2x35x+4f(x)=2x^3-5x+4

b) g(x)=x2exg(x)=x^2e^x

c) h(x)=x23h(x)=\sqrt{x^2-3}

   

Oppgave 2 (4 poeng)

  Skriv så enkelt som mulig

a) x23x29+1x+3+5x3{\frac{x^2-3}{x^2-9} + \frac{1}{x+3} + \frac{5}{x-3}}

b) 2ln(a3b2)    3ln(ba2)2 \cdot ln(a^{-3} \cdot b^{2}) \ \ - \ \ 3 \cdot ln(\frac{b}{a^2})

 

Oppgave 3 (4 poeng)

  Tre punkt A(1,6)A(-1,6), B(2,1)B(2,1) og C(4,4)C(4,4) er gitt.

a) Bestem AB\overrightarrow{AB} og AC\overrightarrow{AC}

  Et punkt DD er gitt slik at

b) Bestem koordinatene til DD

Oppgave 4 (6 poeng)

  Funksjonen P er gitt ved

P(x)=2x36x22x+6{P(x)=2x^3-6x^2-2x+6}

 
a) Begrunn at (1,0){(1,0)} er et vendepunkt på grafen til P{P}.
b) Faktoriser P(x){P(x)} i lineære faktorer.
c) Løs likningen

2e3x6e2x2ex+6=0{2e^{3x}-6e^{2x}-2e^x+6=0}

 

Oppgave 5 (6 poeng)

 

Hjørnene i en trekant er A(1,0){A(1,0)} , B(6,2){B(6,2)} og C(3,5){C(3,5)} . Midtpunktene på sidene i trekanten er D{D}, E{E} og F{F}. Se figuren.

a) Forklar at koordinatene til punktene D{D}, E{E} og F{F} er

D(92,72){D \big(\frac{9}{2},\frac{7}{2} \big)}, E(2,52){E \big(2, \frac{5}{2} \big)} og F(72,1){F \big(\frac{7}{2}, 1 \big)}

Skjæringspunktet mellom medianene i trekanten er T.

b) Forklar at vi kan skrive AT{\overrightarrow{AT}} på to måter:

AT=sAD    ,    s=R{\overrightarrow{AT} = s \cdot \overrightarrow{AD}} \ \ \ \ , \ \ \ \ s = \mathbb{R}

AT=AB+tBE    ,    t=R{\overrightarrow{AT} = \overrightarrow{AB} + t \cdot \overrightarrow{BE}} \ \ \ \ , \ \ \ \ t = \mathbb{R}

der s og t er reelle tall.

c) Bruk vektorlikningene i oppgave b) til å bestemme s og t. Bestem koordinatene til T.

Oppgave 6 (4 poeng)

  En fabrikk produserer lyspærer. Alle lyspærene blir kontrollert. I kontrollen blir 8,0 % av lyspærene forkastet. Nærmere undersøkelser viser at
  • 92,0 % av de forkastede lyspærene er defekte
  • 2,0 % av de godkjente lyspærene er defekte
a) Vis at sannsynligheten er 9,2 % for at en tilfeldig produsert lyspære er defekt.
b) Bruk Bayes' setning til å bestemme sannsynligheten for at en defekt lyspære blir forkastet i kontrollen.    

Oppgave 7 (7 poeng)

En rettvinklet ΔABC\Delta{ABC} der C=90o\angle{C} = 90^{o} er gitt. Den innskrevne sirkelen har sentrum i S{S} og radius r{r}. Sirkelen tangerer trekanten i punktene D{D}, E{E} og F{F}. Vi setter AC=b{AC = b}, BC=a{BC = a} og AB=c{ AB = c}. Du får oppgitt at BF=BE{BF = BE} og AD=AE{AD = AE}

a) Bruk figuren til å forklare at a=BF+r{a = BF +r} og b=AD+r{b = AD +r}

Av figuren ser vi dessuten at c=AE+BE{c = AE + BE}

b) Vis at a+bc=2r{a + b - c = 2r}

c) Forklare at vi kan skrive arealet T av trekanten på to måter:

T=12ab{T = \frac{1}{2} \cdot a \cdot b} og T=12r(a+b+c){T = \frac{1}{2} \cdot r \cdot (a+b+c)}

d) Bruk resultatene du fant i oppgavene b) og c) til å utlede Pytagoras' setning.

DEL 2 - Med hjelpemidler

Oppgave 1 (6 poeng)

  I en kortstokk er det 52 kort. Kortene er fordelt på de fire fargene hjerter, ruter, spar og kløver. Hver farge har 13 kort fordelt på verdiene 2 til 10, knekt, dame, konge og ess. Tenk deg at du skal trekke tilfeldig fem kort fra kortstokken.

a) Bestem sannsynligheten for at du kommer til å trekke nøyaktig tre kort med verdi 10.

b) Bestem sannsynligheten for at du kommer til å trekke nøyaktig tre kort med samme verdi.

c) Bestem sannsynligheten for at alle kortene du kommer til å trekke, har samme farge.

Figur 1: Ett mulig utfall i oppgave a) Figur 2: Ett mulig utfall i oppgave b) Figur 3: Ett mulig utfall i oppgave c)  

Oppgave 2 (6 poeng)

Posisjonsvektoren til en partikkel er gitt ved

r(t)=[t21,t3t]{\overrightarrow{r}(t)= \left[ t^2-1,t^3-t \right] }

a) Tegn grafen til r{\overrightarrow{r}} når t[32,32]t \in \left[ -\frac{3}{2}, \frac{3}{2} \right].
b) Bestem fertsvektoren v(t){\overrightarrow{v}}(t) og akselerasjonsvektoren a(t){\overrightarrow{a}(t)}.
c) Bruk CAS til å bestemme den minste banefarten til partikkelen.

Oppgave 3 (4 poeng)

En stige på 7,0 m er stilt opp langs en vegg. Stigen danner sammen med veggen og bakken en rettvinkler ΔABC{\Delta{ABC}}. Se figuren. Vi setterAC=x{ AC = x}. Den korteste avstanden fra C{C } til stigen er d{d} meter.

a) Vis at d=x49x27d = {\frac{x \sqrt{49-x^2}}{7} }

b) Bestem x{x} slik at d{d} blir lengst mulig.

Hvor lang er d for denne verdien av x ?

 

 

Oppgave 4 (8 poeng)

  Funksjonen f{f } er gitt ved

f(x)=2x36x2+5x{f(x)=2x^3 - 6x^2 + 5x}

a) Bruk graftegner til å tegne grafen til f{f}.

Grafen tilf{ f} har tre tangenter som går gjennom punktetA(4,3){ A(4, 3)} .

b) Forklar at x-koordinaten til tangeringspunktene må være løsning av likningen

f(x)3x4=f(x){{\frac{f(x)-3}{x-4}} = f'(x)}

c) Bruk CAS til å løse denne likningen. Bestem likningen til hver av tangentene.

La P(a,b){P(a, b)} være et punkt i planet.

d) Hva er det maksimale antallet tangenter grafen til f{f }kan ha som går gjennom P{P }?

Gratis Prøvesmak
Superteknikker
En til en veiledning
R1
 - Kapittelinndeling: Mattevideo.no R1 (gammel læreplan)
 - Algebra
 - Potenser og logaritmer
×
04:58
Oppgave 2
Vi løser noen oppgaver ved å bruke regnereglene for potenser. (NB: Det fins flere lignende videoer på mattevideo i kurset 1T.) 
×
02:48
Teori 1
Potens. Vi repeterer noen grunnleggende definisjoner. (Trenger du flere videoer om dette, kan du se på mattevideo under matematikk 1T.)

r1_2431
03:37
Teori 2
Regneregler for potenser. Igjen repetisjon. Men: disse er det lurt å kunne.

r1_2433
03:46
Teori 3
Tierlogaritmer. Definisjonen.

r1_2436
02:50
Teori 4
Vi bruker logaritmedefinisjonen til å regne ut noen logaritmer.

r1_2438
03:52
Teori 5
Likningene 10x=a10^x = a og lgx=blgx = b
03:25
Oppgave 1
Vi regner ut noen potenser ved å bruke potensdefinisjonen(e).
Skjul video ▼
Vis video ▲
Selvtester og oppgaver for mengdetrening
10 sekunders quiz
Eksamensoppgaver
×
Hvilket emne introduseres her?
Potenser
Lever svar
Geometri
Lever svar
Algebra
Lever svar
00:00
Hva er en grunnleggende definisjon av en potens?
Å gange tallet med seg selv flere ganger
Lever svar
Å trekke tallet fra seg selv én gang
Lever svar
Å legge tallet til seg selv én gang
Lever svar
00:07
Hva forteller eksponenten deg?
Hvor mange ganger tallet multipliseres med seg selv
Lever svar
Hvor mange ganger tallet adderes med seg selv
Lever svar
Hvor mange røtter som skal tas av tallet
Lever svar
00:21
Hva blir et tall opphøyd i nullte?
0
Lever svar
1
Lever svar
Tallet selv
Lever svar
00:29
Hva betyr en negativ eksponent?
At tallet ganges med 0
Lever svar
At vi får en brøk (1 delt på potensen med positiv eksponent)
Lever svar
At eksponenten må rundes opp
Lever svar
00:39
Hva innebærer det når eksponenten er en brøk?
Tallet kan ikke opphøyes
Lever svar
Vi tar en rot og så opphøyer i tellerens verdi
Lever svar
Vi trekker fra tallet i nevneren
Lever svar
00:54
Er det enkelt å definere potenser med irrasjonale eksponenter?
Ja, de er samme som rasjonale eksponenter
Lever svar
Nei, det krever en mer avansert grenseverdidefinisjon
Lever svar
Nei, det er umulig å definere
Lever svar
01:15
Hvilken type eksponent er tallet pi?
Rasjonal
Lever svar
Irrasjonal
Lever svar
Kompleks
Lever svar
01:19
Kan pi skrives med et endelig antall desimaler?
Ja
Lever svar
Nei
Lever svar
Bare hvis man avrunder til nærmeste heltall
Lever svar
01:32
Hva skjer når et tall opphøyes i nullte potens?
Det blir alltid 0
Lever svar
Det blir alltid 1
Lever svar
Det endrer seg etter tallets størrelse
Lever svar
02:01
Gjelder regelen a^0 = 1 for alle tall (bortsett fra a=0)?
Ja
Lever svar
Nei, kun for a>1
Lever svar
Nei, kun for a
Lever svar
02:14
Hva betyr en negativ eksponent som −5?
Tallet multipliseres fem ganger
Lever svar
1 delt på tallet opphøyd i 5
Lever svar
At man får 5 subtraksjoner av tallet
Lever svar
02:17
Hva er 10⁻⁵ som desimaltall?
0,00001
Lever svar
0,1
Lever svar
1,00000
Lever svar
02:30
Hvor mange nuller er det etter komma før første ikke-null siffer i 0,00001?
4
Lever svar
5
Lever svar
2
Lever svar
02:37
Hva illustrerer eksemplene om potenser?
Praktisk bruk av definisjoner og utregninger
Lever svar
At alle tall er irrasjonale
Lever svar
At vi ikke kan ha negative eksponenter
Lever svar
02:46
Hvilket emne gjennomgås her?
Brøkregning
Lever svar
Regnereglene for potenser
Lever svar
Multiplikasjonstabellen
Lever svar
00:00
Hva bruker vi for å utlede reglene?
Definisjonen av potens
Lever svar
En tabell
Lever svar
Tilfeldige gjetninger
Lever svar
00:05
Hva gjør vi med eksponentene når vi multipliserer samme grunntall?
Vi subtraherer dem
Lever svar
Vi legger dem sammen
Lever svar
Vi deler dem på to
Lever svar
00:12
Hva beskriver en potens ifølge definisjonen?
Et gjentatt produkt av samme tall
Lever svar
En sum av forskjellige tall
Lever svar
Bare et tilfeldig tall
Lever svar
00:36
Hvordan endres antall faktorer når vi multipliserer potenser?
De øker
Lever svar
De halveres
Lever svar
De forblir uendret
Lever svar
00:43
Hva gjør vi med eksponentene ved multiplikasjon?
Legger dem sammen
Lever svar
Trekker dem fra
Lever svar
Deler dem
Lever svar
00:52
Hvordan beskrives regelen her?
Den er lett å akseptere
Lever svar
Den er svært komplisert
Lever svar
Den er ikke relevant
Lever svar
01:05
Hva gjør vi med eksponentene ved divisjon av samme grunntall?
Vi trekker dem fra
Lever svar
Vi legger dem sammen
Lever svar
Vi overser dem
Lever svar
01:11
Hva skjer med eksponenten når faktorer strykes ved divisjon?
Den reduseres
Lever svar
Den øker
Lever svar
Den forblir uendret
Lever svar
01:45
Hvilken operasjon tilsvarer forkortingen av faktorer?
Subtraksjon
Lever svar
Addisjon
Lever svar
Multiplikasjon
Lever svar
02:00
Hvordan kan de andre reglene for potenser finnes?
På samme måte som de første
Lever svar
Ved ren gjetning
Lever svar
De finnes ikke
Lever svar
02:04
Hva annet enn et helt tall kan inngå i en potens?
En vektor
Lever svar
En brøk
Lever svar
En ukjent variabel
Lever svar
02:42
Hva gjør vi med en brøk når den opphøyes i en potens?
Både teller og nevner opphøyes
Lever svar
Bare telleren opphøyes
Lever svar
Bare nevneren opphøyes
Lever svar
02:45
Hva gjør vi med eksponentene i en potens opphøyd i en ny eksponent?
Vi multipliserer dem
Lever svar
Vi legger dem sammen
Lever svar
Vi trekker dem fra
Lever svar
03:03
Hva kalles logaritmer med base 10?
Naturlige logaritmer
Lever svar
Tierlogaritmer
Lever svar
Logaritmer med base e
Lever svar
00:00
Hvilken funksjon danner grunnlaget for tierlogaritmen?
e opphøyd i x
Lever svar
10 opphøyd i x
Lever svar
x opphøyd i 10
Lever svar
00:08
Er 10 opphøyd i x alltid positiv?
Ja
Lever svar
Nei
Lever svar
Bare når x er positiv
Lever svar
01:00
Hva er 10 opphøyd i minus en?
10
Lever svar
0,1
Lever svar
0
Lever svar
01:02
Hva er 10 opphøyd i null?
1
Lever svar
0
Lever svar
10
Lever svar
01:09
Hva er et hvert tall opphøyd i null?
1
Lever svar
0
Lever svar
-1
Lever svar
01:14
Hva er 10 opphøyd i en halv?
Kvadratroten av 10
Lever svar
10
Lever svar
1/10
Lever svar
01:32
Er kvadratroten av 10 litt over 3?
Ja
Lever svar
Nei
Lever svar
Den er nøyaktig 3
Lever svar
01:52
Er grafen til 10 opphøyd i x stigende?
Ja
Lever svar
Nei
Lever svar
Den er konstant
Lever svar
01:59
Hva uttrykker en logaritme?
En eksponent
Lever svar
En divisor
Lever svar
En rot
Lever svar
02:04
Hva kalles logaritmen til 5?
logg 5
Lever svar
5
Lever svar
ln 5
Lever svar
02:09
Hva heter tallet man får ved å ta logg av 5?
Logaritmen til 5
Lever svar
Logaritmen til 10
Lever svar
Logaritmen til -5
Lever svar
02:41
Hva angir logaritmen til et tall?
Eksponenten til 10
Lever svar
Faktoren vi må dele med
Lever svar
Roten av tallet
Lever svar
02:45
Hva får vi hvis vi tar 10 opphøyd i logg(5)?
10
Lever svar
5
Lever svar
1
Lever svar
02:58
Kan vi ta logaritmen av et negativt tall?
Nei
Lever svar
Ja
Lever svar
Bare av -1
Lever svar
03:06
Hva er 10 opphøyd i logg(p)?
p
Lever svar
1
Lever svar
10
Lever svar
03:32
Må p være positiv for å ta logg(p)?
Ja
Lever svar
Nei
Lever svar
Bare hvis p er heltall
Lever svar
03:39
Hva studeres i denne videoen?
Ti-logaritmer
Lever svar
Brøkregning
Lever svar
Geometri
Lever svar
00:00
Hva beskriver en logaritme?
En eksponent
Lever svar
En addisjon
Lever svar
En subtraksjon
Lever svar
00:12
Hva forteller logaritmen oss?
Hvilken eksponent som gir tallet
Lever svar
Hvor stort tallet er
Lever svar
Hvor mange ganger vi adderer tall
Lever svar
00:27
Hva betyr '=' i en ligning?
At to uttrykk har samme verdi
Lever svar
At ett tall er større enn et annet
Lever svar
At vi gjetter en verdi
Lever svar
00:40
Hva gjør en eksponent?
Angir hvor mange ganger basen multipliseres med seg selv
Lever svar
Legger tallene sammen
Lever svar
Deler tallene
Lever svar
00:42
Hva betyr en negativ eksponent?
At tallet er en brøkdel av basen
Lever svar
At tallet blir større
Lever svar
At vi ikke kan regne det ut
Lever svar
00:51
Hva er en kvadratrot?
Et tall som ganget med seg selv gir originaltallet
Lever svar
Et tall som legges til seg selv
Lever svar
Et tall som subtraheres fra basen
Lever svar
01:07
Hva kreves for å finne en logaritme?
Å vite eksponenten til basen
Lever svar
Å trekke fra basen
Lever svar
Å dele tallet på basen
Lever svar
01:22
Hva er basen i en ti-logaritme?
10
Lever svar
2
Lever svar
1
Lever svar
01:32
Hva kalles løsningen på en ligning?
Svaret
Lever svar
Gjetningen
Lever svar
Feilmarginen
Lever svar
01:39
Hvilke tall kan vi ta logaritmen av?
Positive tall
Lever svar
Negative tall
Lever svar
Alle tall
Lever svar
01:43
Hva betyr en brøk som eksponent?
En rot av tallet
Lever svar
En sum av tallene
Lever svar
En differanse av tallene
Lever svar
01:51
Hva gjør en større eksponent med tallet (basen > 1)?
Tallet blir større
Lever svar
Tallet blir mindre
Lever svar
Tallet endres ikke
Lever svar
01:56
Hva er fem i uttrykket 10^5?
Eksponenten
Lever svar
Basen
Lever svar
Logaritmen
Lever svar
02:03
Hva kalles tallet vi opphøyer basen i?
Eksponent
Lever svar
Faktor
Lever svar
Summand
Lever svar
02:12
Kan vi ta logaritmen av et negativt tall?
Nei
Lever svar
Ja
Lever svar
Bare noen ganger
Lever svar
02:22
Er logaritmen til et negativt tall definert?
Nei
Lever svar
Ja
Lever svar
Kun i spesielle tilfeller
Lever svar
02:29
Hva skjer på en kalkulator hvis vi tar log av et negativt tall?
Feilmelding
Lever svar
Riktig svar
Lever svar
Et gyldig tall
Lever svar
02:39
Hva beskriver en logaritme?
Hvor mange ganger vi ganger et tall med seg selv
Lever svar
Hvilken eksponent som trengs for å oppnå et gitt tall
Lever svar
Hvor mye et tall øker når vi legger til en
Lever svar
00:00
Hva er grunntallet i en vanlig logaritme (lg)?
2
Lever svar
10
Lever svar
e
Lever svar
00:08
Hva kalles resultatet av 10 opphøyd i en eksponent?
En potensverdi
Lever svar
En rotverdi
Lever svar
En differanse
Lever svar
00:17
Hva representerer vanligvis x i en ligning?
En konstant
Lever svar
En ukjent variabel
Lever svar
Et tilfeldig symbol uten betydning
Lever svar
00:26
Hva betyr det når noe er logisk i matematikk?
At det følger gyldige slutninger
Lever svar
At det er tilfeldig
Lever svar
At det er umulig å forstå
Lever svar
00:35
Hva betyr det om en ligning har én unik løsning?
At den har ingen løsning
Lever svar
At den har akkurat én løsning
Lever svar
At den har uendelig mange løsninger
Lever svar
00:38
Hvilken type tall kan vi ta logaritmen av?
Negative tall
Lever svar
Positive tall
Lever svar
Null
Lever svar
00:44
Hva kan p ofte representere i en ligning?
Et positivt tall
Lever svar
Et negativt tall
Lever svar
En brøkdel
Lever svar
00:53
Hva kan symbolet b representere i matematikk?
En bestemt konstant
Lever svar
Et vilkårlig tall
Lever svar
Et geometrisk objekt
Lever svar
01:01
Hva er en løsning på en ligning?
Et vilkårlig tall
Lever svar
Et tall som oppfyller ligningen
Lever svar
Et tall uten sammenheng
Lever svar
01:06
Hvorfor må p være positiv i en eksponentiell ligning?
Fordi logaritmen kun er definert for positive tall
Lever svar
Fordi negative tall er større
Lever svar
Fordi null er alltid løsningen
Lever svar
01:10
Hva brukes logaritmer til i matematikk?
Å finne eksponenten som gir et visst tall
Lever svar
Å addere tall
Lever svar
Å måle lengder
Lever svar
01:14
Hvis log x = a, hva er x?
x = a
Lever svar
x = 10^a
Lever svar
x = a/10
Lever svar
01:21
Hva betyr log x = a?
At x = a + 10
Lever svar
At 10^a = x
Lever svar
At a = x^10
Lever svar
01:33
Hvis log x = 3, hva er x?
3
Lever svar
10^3
Lever svar
1/10^3
Lever svar
01:50
Hvis log x = n, hva er x?
x = n
Lever svar
x = 10/n
Lever svar
x = 10^n
Lever svar
01:54
Hvordan kan vi sjekke om en løsning av en logaritmeligning er riktig?
Ved å sette verdien tilbake i ligningen
Lever svar
Ved å gjette
Lever svar
Ved å spørre noen andre
Lever svar
02:02
Hva krever logaritmen for å definere x?
At x er negativ
Lever svar
At x er positiv
Lever svar
At x er null
Lever svar
02:11
Hva er hovedregelen for logaritmer i base 10?
log x = a betyr at x = 10^a
Lever svar
log x = a betyr at x = a * 10
Lever svar
log x = a betyr at a = 1/x
Lever svar
02:25
Kan vi ta logaritmen av et negativt tall?
Nei, det går ikke
Lever svar
Ja, alltid
Lever svar
Bare hvis tallet er heltall
Lever svar
03:05
Kan logaritmeverdier være negative?
Ja, logaritmer kan være negative
Lever svar
Nei, aldri
Lever svar
Kun hvis x=1
Lever svar
03:26
Hva forteller en negativ logaritmeverdi om tallet?
At tallet ligger mellom 0 og 1
Lever svar
At tallet er større enn 10
Lever svar
At tallet er negativt
Lever svar
03:30
Hvis log x = -2, hva er x?
x = -2
Lever svar
x = 2
Lever svar
x = 10^-2
Lever svar
03:33
Hva betyr 10^-2?
100
Lever svar
0,01
Lever svar
0,1
Lever svar
03:48

Løs likningen

9x3x12=09^{x}-3^{x}-12=0


x=lg4lg(3)x=\frac{lg4}{lg(-3)}

Lever svar

x=0x=0

Lever svar

x=lg4lg3x = \frac{lg 4}{lg3}

Lever svar
×
Tilbakestill oppgaven som uløst
×
Tilbakestill oppgaven som uløst
×
Tilbakestill oppgaven som uløst
Tallet 333^{-3} = ?
0
Lever svar
-9
Lever svar
1/27
Lever svar
×
Tilbakestill oppgaven som uløst
×
Tilbakestill oppgaven som uløst
×
Tilbakestill oppgaven som uløst
Tallet a34a^{\frac{3}{4}} =
3a4\frac{3a}{4}
Lever svar
a34\sqrt[4]{a^3}
Lever svar
a43\sqrt[3]{a^4}
Lever svar
×
Tilbakestill oppgaven som uløst
×
Tilbakestill oppgaven som uløst
×
Tilbakestill oppgaven som uløst
logalog{a} er definert som:
Det tall man må opphøye 10 i for å få a
Lever svar
Det tall man må opphøye a i for å få 10
Lever svar
Det tall man må opphøye a i for å få 1
Lever svar
×
Tilbakestill oppgaven som uløst
×
Tilbakestill oppgaven som uløst
×
Tilbakestill oppgaven som uløst
log1000\log {1000} er:
3
Lever svar
10
Lever svar
ca 17,34
Lever svar
×
Tilbakestill oppgaven som uløst
×
Tilbakestill oppgaven som uløst
×
Tilbakestill oppgaven som uløst
Hvis 10x=710^x = 7 så er
x=log7x=\log {7}
Lever svar
logx=7\log x = 7
Lever svar
x=7x = 7
Lever svar
×
Tilbakestill oppgaven som uløst
×
Tilbakestill oppgaven som uløst
×
Tilbakestill oppgaven som uløst