×
VGS matematikk
1 - 2 - 3 klasse

Lær VGS matten fra A til Å
med de beste metodene

Enkelt å
holde fokus

Forstå det
vanskelige

Få god
oversikt

Øv på
riktig tema

Få hjelp når
du stopper opp

Anne-Lise Frivold Svendsen

Flott opplegg og undervisning😊

Karina Tellmann Marthinussen

Tusen takk!

Ruben Flatås

Gjorde unna R2 som privatist på et halvt år!! Mattevideo har gjort det mye lettere å fordøye et så tungt pensum på så kort tid. Tusen takk for hjelpa!!😊

Vilde Ågotnes

Bra undervisning!

Hamdi A Ahmed

Jeg er fornøyd med videone deres det har hjulpet meg til å bestå matten i både Vgs og Uni . Så takk😊

Halvard Balto

Meget bra!

Halil Ibrahim Keser

Tusen takk. Veldig flink lærer. Gode forklaringer.

Marte Forsberg

Helt topp :D

Jon Mills

Bra side.

Kirsti Beate Årsandøy

Kjempebra!😊

Mari Bertelsen

Bra side. Veldig gode forklaringer😊

Selma Voss

Tror dette kommer til å redde meg på noen prøver fremover. Takk! :D

Caja Magnussen

takk for hjelpen

Abdi Omar

Takk for læreren av denne siden. Det er utrolig en bra side, fikk meg mye. Tusen hjertelig takk

Olav Lunde Arneberg

Kan trygt anbefale Arne Hovland! Beste læreren jeg har hatt i løpet av drøyt 20 år med utdanning.

Daniel Gabrielsen

takk for denne siden :D min 1T mattelærer snakker så monotont og gjør matte så kjedelig at interessen svinner vekk og jeg sovner etter 5 minutter.

Kassi 17 år - har eksamen i R1 til våren.
Min lærer går litt for raskt gjennom r1 pensum, noe som gjør at jeg trenger repetisjon av de vanskeligste emnene...les mer
Liam 34 år - har eksamen i R2 til jul.
Jeg kjøpte medlemskap fordi jeg ønsket forklaring via video og tilgang på "lærer" hele døgnet. Mattevideo er...les mer
Oda 16 år - har eksamen i 1T til våren.
Jeg ble abonnement hos mattevideo fordi jeg slet med å forstå pensum i 1T. Jeg ønsket å prøve, for å se...les mer
Nicolai 21 år - har eksamen i R2 til sommeren.
Jeg ble medlem for å forbedre meg, og gå dypere inn i spesifikke temaer. Jeg går i 10. klasse og tar forsert løp...les mer
Daniel 15 år - har eksamen i 1t til våren.
Jeg ble medlem for å forbedre meg, og gå dypere inn i spesifikke temaer. Jeg går i 10. klasse og tar forsert løp...les mer
June 20 år - preppet til eksamen.
Jeg brukte mattevideo da jeg måtte ta opp igjen eksamen, selvlært. Min gamle lærer gjorde det veldig vanskelig å henge med...les mer
Velg ditt fag
1PY er et studieretningsfag på Vg1-nivå. 1PY står for "Praktisk matematikk for yrkesfag".
Hele læreplan fra A til Å
Videoundervsining alle temaer
Korte og effektive selvtester
Vi gjennomgår eksamen
Organiser temaene etter ønsket lærebok
Kapittelinndeling: Mattevideo.no
×
Organiser innholdet etter din lærebok
Organiser videoer med ønskede ikoner
Organiser selvtester med ønskede ikoner
Tall og algebra I
, curr: 1py, book: 663
13:38
04:08
14:14
17:07
04:36
07:00
06:08
10:46
09:31
05:48
Tall og algebra II
, curr: 1py, book: 663
10:38
19:29
08:10
04:38
05:02
04:53
12:22
05:53
Økonomi I
, curr: 1py, book: 663
10:05
06:21
05:46
10:03
07:17
07:32
09:36
Økonomi II
, curr: 1py, book: 663
05:52
04:22
08:49
05:29
03:02
12:38
30:35
Geometri
, curr: 1py, book: 663
09:22
23:59
04:58
10:45
07:57
21:01
09:51
Geometri i 3D
, curr: 1py, book: 663
17:03
38:52
18:27
07:39
16:26
DEL 1 - Uten hjelpemidler

Oppgave 1 (4 poeng)

 

Et skolesenter har en el-bil for de ansatte. For hver tur blir kilometerstanden skrevet ned i en kjørebok. På én tur endret kilometerstanden seg fra 2468 km til 2513 km.

a) Hvor mange mil var kjøreturen?

Bilen kan kjøre 300 km når batteriet er 100 % oppladet.

b) Hvor mange kilometer kan bilen kjøre når batteriet er 60 % oppladet?

Oppgave 2 (4 poeng)

 

I kartet ovenfor ser vi en del av Oslo. Trekanten ABC i kartet er rettvinklet. På kartet er AB = 6 cm og BC = 8 cm.

a) Bestem lengden AC på kartet.

Eva skal gå fra A til B, og så til C. Kartet har målestokken 1:5000.

b) Hvor mange meter må Eva gå i virkeligheten?

Oppgave 3 (3 poeng)

 

Gjør nødvendige beregninger, og bestem hvilken figur som har minst areal og hvilken figur som har størst areal.  

Oppgave 4 (3 poeng)

 
a) Løs likningen.

3x4=5x+103x-4=5x+10

b) Trekk sammen.

2a4(a+b)+6b2a-4(a+b)+6b

Oppgave 5 (4 poeng)

 

Skjermdumpen ovenfor viser priser for heiskort i Hafjell Bike Park. Stian er 21 år og kjøper et heiskort for 1 dag.

a) Bestem prisen per tur dersom han kjører 5 turer.

Bruk prisene på heiskort for voksne.

b) Undersøk om prisen per dag og antall dager er proporsjonale størrelser.

Oppgave 6 (6 poeng)

  Ole skal ha selskap og kjøper reker til 8 personer. Han beregner 500 g reker per person.

a) Hvor mange kilogram reker kjøper Ole?

Det er 30 % spiselig del i reker. Resten er skall.

b) Hvor mange gram er spiselig, og hvor mange gram er skall i 500 g reker?

I 2017 ble det fisket til sammen 16 000 tonn reker og kongekrabber i Norge. Forholdet mellom reker og kongekrabber var 7:1.

c) Hvor mange tonn reker ble fisket i 2017?

DEL 2 - Med hjelpemidler

Oppgave 7 (8 poeng)

 

En sølvsmed lager en sølje (smykke) til en festdrakt. Han starter med et sølvstykke med form som en regulær tolvkant, slik figuren ovenfor viser.

a) Bestem omkretsen av sølvstykket.

Sølvstykket merkes slik at det består av 12 like trekanter, slik figuren ovenfor viser.

b) Bestem vinklene og høyden i en slik trekant.

Sølvsmeden stanser ut et hull i hver av de 12 trekantene. Diameteren i hvert hull er 1,7 cm.

c) Vis at arealet av sølvstykket nå er 42 cm2.

Massetettheten til sølv er 10,5 g/cm3. Sølv koster 3,25 kr per gram.

d) Hva koster sølvet i sølvstykket med hull når tykkelsen er 0,1 cm?

Oppgave 8 (6 poeng)

 

Hege er lærling i prosessfag og jobber skift. Hun har 10 807 kr i fast månedslønn, og får 40 kr per time i skifttillegg. En måned jobber Hege 134 timer.

a) Bestem bruttolønna denne måneden.

Hege betaler 20 % i skatt per måned. I tillegg betaler hun 150 kr til fagforeningen.

b) Bestem nettolønna.

Hege har opptjent 3128 kr i feriepenger. Feriepenger utgjør 12,5 % av feriepengegrunnlaget.

c) Bestem feriepengegrunnlaget.

Oppgave 9 (6 poeng)

 

En del av Numedalsbanen, fra Veggli til Rødberg, er 32 km. Her kan man sykle dresin (sykkel for togskinner). En dresin har farten 7 km/t.

a) Hvor lang tid bruker dresinen fra Veggli til Rødberg?

Det kostet omtrent 30 millioner kroner å bygge Numedalsbanen i 1927. Da var konsumprisindeksen 3,5. I 2017 var den 105,5.

b) Hva ville det kostet å bygge Numedalbanen i 2017 dersom prisen hadde fulgt konsumprisindeksen?

Et år var verdien av et lokomotiv 20 millioner kroner. Verdien synker med 9 % hvert år.

c) Bestem verdien av lokomotivet etter tre år.

Oppgave 10 (6 poeng)

 

Et svømmebasseng har form som et rett prisme med rektangelformet grunnflate. Det er 50 m langt, 25 m bredt og 2,0 m dypt.

a) Vis at svømmebassenget rommer 2 500 000 L vann.

Fra klokken 08:00 tømmes svømmebassenget med 3800 L vann per minutt.

b) Hva er klokken når svømmebassenget er tømt?

Svømmebassenget bygges om, slik at den ene enden av bassenget blir dypere. Figuren nedenfor viser det nye bassenget sett fra siden.

c) Hvor mange liter kan bassenget romme nå?

Oppgave 11 (4 poeng)

 

En dykkerklokke har form omtrent som en kule. Den indre diameteren er 2,0 m og den ytre diameteren er 2,1 m. Se figur av tverrsnittet på dykkerklokken nedenfor. Volumet av en kule er gitt ved formelen

V=43πr3{V=\frac{4}{3} \cdot \pi \cdot r^3}

a) Bestem det indre volumet av dykkerklokken.

Dykkerklokken er laget av jern. Jern veier 7990 kilogram per kubikkmeter.

b) Bestem hvor mye jernet i dykkerklokken veier.

Oppgave 12 (6 poeng)

  Anne har begynt å spare til en egen gård i Gårdssparing for unge (GSU). Hun setter inn 15 000 kr den 1. januar hvert år fra og med 2015, og får 4,50 % rente per år.

Regnearket ovenfor viser Annes sparingsplan. Hun har selv fylt inn de tre første årene.

a) Bruk regneark, fyll inn og fullfør sparingsplanen for Anne til og med år 2024.

b) Hvor mange kroner vil Anne få i renter fra 2015 til og med 2024?

c) Hvor mange kroner ville Anne hatt på kontoen dersom hun heller hadde spart 30 000 kr per år fra 2015?

Husk å bruke formler og vise dem i besvarelsen.  
Gratis Prøvesmak
Superteknikker
En til en veiledning
1PY
 - Kapittelinndeling: Mattevideo.no
 - Tall og algebra I
 - Tallregning
×
02:52
Oppgave 2
Regn ut:    62(34)2+3(233)6-2(3-4)^2+3(2^3-3)
×
04:16
Teori 1
Vi ser på fortegnsregler ved addisjon og subtraksjon. Tallinja er et fint verktøy her.

1t_185
04:58
Teori 2
Fortegnsreglene for ganging deling og potenser.
04:24
Teori 3
Regnerekkefølge.
01:16
Oppgave 1
Regn ut:    (9:34)21(9 : 3 - 4)^2 -1
Skjul video ▼
Vis video ▲
Selvtester og oppgaver for mengdetrening
10 sekunders quiz
Eksamensoppgaver
×
Hva skal vi se på i denne videoen?
Løsning av likninger
Lever svar
Regnerekkefølge
Lever svar
Brøkregning
Lever svar
00:00
Skal vi alltid regne pluss før gange?
Ja
Lever svar
Nei
Lever svar
Kun hvis det er parenteser
Lever svar
00:10
Kan tolkningen av et uttrykk uten parenteser variere?
Ja
Lever svar
Nei
Lever svar
Kun ved komplekse uttrykk
Lever svar
00:23
Hvorfor trenger vi regler for regnerekkefølge?
For å gjøre regning enklere
Lever svar
For å få ett riktig svar
Lever svar
For å unngå negative tall
Lever svar
00:30
Er rekkefølgen av operasjoner bestemt i matematikk?
Ja
Lever svar
Nei
Lever svar
Bare i avansert matematikk
Lever svar
00:55
Hva regner vi til slutt i regnerekkefølgen?
Potenser
Lever svar
Gange og dele
Lever svar
Pluss og minus
Lever svar
01:05
Hva er summen av to og femten?
Sytten
Lever svar
Tjue
Lever svar
Femten
Lever svar
01:54
Er det bare ett riktig svar i matematikk?
Ja
Lever svar
Nei
Lever svar
Det avhenger av situasjonen
Lever svar
01:59
Hva betyr det når det ikke står noe tegn mellom to tall eller uttrykk?
Addisjon
Lever svar
Multiplikasjon
Lever svar
Subtraksjon
Lever svar
02:03
Hvilken operasjon skal vi gjøre først ifølge reglene?
Potenser
Lever svar
Parenteser
Lever svar
Gange og dele
Lever svar
02:25
Hva bør du gjøre med regnerekkefølgen?
Lære den utenat
Lever svar
Slå den opp hver gang
Lever svar
Ignorere den
Lever svar
02:33
Hva er resultatet når vi trekker et større tall fra et mindre tall?
Et positivt tall
Lever svar
Null
Lever svar
Et negativt tall
Lever svar
02:42
Hvilken operasjon kommer før gange og dele i regnerekkefølgen?
Potenser
Lever svar
Parenteser
Lever svar
Pluss og minus
Lever svar
02:54
Hva skjer når vi ganger et positivt tall med et negativt tall?
Resultatet blir positivt
Lever svar
Resultatet blir negativt
Lever svar
Resultatet blir null
Lever svar
03:11
Hva skjer når vi ganger to negative tall?
Resultatet blir negativt
Lever svar
Resultatet blir positivt
Lever svar
Resultatet blir null
Lever svar
03:15
Hva skjer med fortegnet når vi har to negative faktorer?
Det blir negativt
Lever svar
Det blir positivt
Lever svar
Det blir nøytralt
Lever svar
03:34
Hva er minus minus?
Minus
Lever svar
Pluss
Lever svar
Null
Lever svar
03:38
Hva skjer når vi ganger et negativt tall med et positivt tall?
Resultatet blir negativt
Lever svar
Resultatet blir positivt
Lever svar
Resultatet blir null
Lever svar
03:50
Hvorfor er det viktig å være oppmerksom på fortegn når man regner?
For å få riktig resultat
Lever svar
Fortegn har ingen betydning
Lever svar
For å spare tid
Lever svar
03:57
Hvorfor kan det være lurt å vente med fortegnsdiskusjonen til slutt?
For å unngå forvirring
Lever svar
For å spare tid
Lever svar
For å få et større tall
Lever svar
04:05
Hvor viktig er det å følge regnerekkefølgen for å få riktig svar?
Ikke viktig
Lever svar
Litt viktig
Lever svar
Veldig viktig
Lever svar
04:16
Hvilke operasjoner gjelder fortegnsreglene for?
Ganging, deling og potenser
Lever svar
Addisjon og subtraksjon
Lever svar
Kvadratrøtter
Lever svar
00:00
Hva avgjør fortegnet ved ganging?
Antall negative faktorer
Lever svar
Størrelsen på tallene
Lever svar
Antall positive faktorer
Lever svar
00:05
Hva blir fortegnet når vi ganger to positive tall?
Positivt
Lever svar
Negativt
Lever svar
Null
Lever svar
00:13
Hvordan ganger vi med negative tall?
Ganger som vanlig
Lever svar
Endrer regnereglene
Lever svar
Bruker addisjon i stedet
Lever svar
00:25
Hva blir produktet av 5 og 3 uten hensyn til fortegn?
15
Lever svar
8
Lever svar
2
Lever svar
00:37
Hva blir fortegnet når vi har én negativ faktor?
Negativt
Lever svar
Positivt
Lever svar
Null
Lever svar
00:43
Hva skjer med fortegnet for hver negativ faktor?
Det skifter
Lever svar
Det forblir positivt
Lever svar
Det blir null
Lever svar
00:51
Hva blir fortegnet når vi har to negative faktorer?
Positivt
Lever svar
Negativt
Lever svar
Null
Lever svar
00:58
Hva skjer med fortegnet når antall negative faktorer er oddetall?
Resultatet blir negativt
Lever svar
Resultatet blir positivt
Lever svar
Resultatet blir null
Lever svar
01:03
Hva blir resultatet når vi ganger to negative tall?
Positivt tall
Lever svar
Negativt tall
Lever svar
Null
Lever svar
01:09
Hvor mange fortegnsskifter skjer med to negative faktorer?
To
Lever svar
Ett
Lever svar
Ingen
Lever svar
01:12
Hva blir fortegnet når antall negative faktorer er partall?
Positivt
Lever svar
Negativt
Lever svar
Null
Lever svar
01:28
Hva skjer når vi opphøyer et negativt tall i 1?
Vi får samme negative tall
Lever svar
Det blir positivt
Lever svar
Det blir null
Lever svar
01:33
Hva blir fortegnet når et negativt tall opphøyes i et partall?
Positivt
Lever svar
Negativt
Lever svar
Ubestemt
Lever svar
01:55
Hva blir produktet av to negative tall?
Positivt tall
Lever svar
Negativt tall
Lever svar
Null
Lever svar
02:13
Hva blir fortegnet når et negativt tall opphøyes i et oddetall?
Negativt
Lever svar
Positivt
Lever svar
Null
Lever svar
02:17
Hva skjer med fortegnet når eksponenten er partall?
Resultatet blir positivt
Lever svar
Resultatet blir negativt
Lever svar
Resultatet blir null
Lever svar
03:25
Hva gjør to minus-tegn med hverandre?
Opphever hverandre
Lever svar
Forsterker negativiteten
Lever svar
Blir til null
Lever svar
03:52
Gjelder samme fortegnsregler for deling som for ganging?
Ja
Lever svar
Nei
Lever svar
Bare noen ganger
Lever svar
03:55
Hva kalles tallene i en divisjon?
Dividend og divisor
Lever svar
Faktor og produkt
Lever svar
Teller og nevner
Lever svar
04:07
Hva blir resultatet når både teller og nevner er negative?
Positivt
Lever svar
Negativt
Lever svar
Null
Lever svar
04:14
Hva skjer med fortegnet når det er ett minus-tegn i brøken?
Resultatet blir negativt
Lever svar
Resultatet blir positivt
Lever svar
Fortegnet påvirkes ikke
Lever svar
04:20
Hvordan skriver vi en negativ brøk tydelig?
Setter minus foran brøken
Lever svar
Setter minus i telleren
Lever svar
Setter minus i nevneren
Lever svar
04:34
Hva skal vi se på i denne videoen?
Fortegnsregler ved addisjon og subtraksjon
Lever svar
Multiplikasjon og divisjon
Lever svar
Brøkregning
Lever svar
00:00
Hva er hensikten med den lille vrien i videoen?
Gjøre det enklere å holde orden på fortegn
Lever svar
Lære nye matematikkregler
Lever svar
Få fortegnregler til å bli vanskeligere
Lever svar
00:05
Hvilket verktøy brukes for å forstå addisjon av tall?
Tallinjen
Lever svar
Kalkulator
Lever svar
Multiplikasjonstabellen
Lever svar
00:23
Hva skjer når vi plusser på et positivt tall på tallinjen?
Vi går til høyre
Lever svar
Vi går til venstre
Lever svar
Vi står stille
Lever svar
00:33
Hva gjør vi når vi legger til et negativt tall?
Går til venstre på tallinjen
Lever svar
Går til høyre på tallinjen
Lever svar
Hopper over tallet
Lever svar
00:53
Hva demonstreres med de fire regnestykkene?
Hvordan fortegn påvirker resultatet
Lever svar
Multiplikasjonstabellen
Lever svar
Bruk av kalkulator
Lever svar
01:18
Hva er resultatet av 3 + 4?
7
Lever svar
-1
Lever svar
1
Lever svar
01:27
Trenger vi alltid tallinjen for enkle regnestykker?
Nei
Lever svar
Ja
Lever svar
Bare noen ganger
Lever svar
01:33
Hva skjer når vi regner 3 + (-4)?
Vi går fire skritt til venstre fra 3
Lever svar
Vi går fire skritt til høyre fra 3
Lever svar
Vi står på tallet 3
Lever svar
01:36
Hvor kommer vi når vi regner -3 + 4?
Til tallet 1
Lever svar
Til tallet -7
Lever svar
Til tallet -1
Lever svar
01:55
Hva er resultatet av -3 + (-4)?
-7
Lever svar
1
Lever svar
-1
Lever svar
02:10
Hva er poenget med å bruke tallinjen?
Visualisere regnestykket
Lever svar
Alltid tegne den
Lever svar
Unngå å gjøre feil
Lever svar
02:20
Hvordan kan vi definere subtraksjon?
Legge til det motsatte tallet
Lever svar
Trekke fra samme tall
Lever svar
Multiplisere med to
Lever svar
02:32
Hva er 3 minus 4 lik ifølge definisjonen?
3 pluss (-4)
Lever svar
7
Lever svar
-1
Lever svar
02:54
Hva skjer når vi har minus minus i et regnestykke?
Det blir pluss
Lever svar
Det blir minus
Lever svar
Det blir null
Lever svar
03:18
Hva er resultatet av -3 - 4?
-7
Lever svar
1
Lever svar
-1
Lever svar
03:43
Hva blir -3 - (-4) omgjort til?
-3 + 4
Lever svar
-3 + (-4)
Lever svar
-7
Lever svar
03:57
Hvor mye er 2 - 3?
-5
Lever svar
-1
Lever svar
1
Lever svar
×
Tilbakestill oppgaven som uløst
×
Tilbakestill oppgaven som uløst
×
Tilbakestill oppgaven som uløst
Hvor mye er 2 (-2) (-3)?
-12
Lever svar
7
Lever svar
12
Lever svar
×
Tilbakestill oppgaven som uløst
×
Tilbakestill oppgaven som uløst
×
Tilbakestill oppgaven som uløst
Hva blir 52(3){ 5 - 2 (-3) } ?
6
Lever svar
-1
Lever svar
11
Lever svar
×
Tilbakestill oppgaven som uløst
×
Tilbakestill oppgaven som uløst
×
Tilbakestill oppgaven som uløst