Gjorde unna R2 som privatist på et halvt år!! Mattevideo har gjort det mye lettere å fordøye et så tungt pensum på så kort tid. Tusen takk for hjelpa!!😊
Vilde Ågotnes
Bra undervisning!
Hamdi A Ahmed
Jeg er fornøyd med videone deres det har hjulpet meg til å bestå matten i både Vgs og Uni . Så takk😊
Min lærer går litt for raskt gjennom r1 pensum, noe som gjør at jeg trenger repetisjon av de vanskeligste emnene...les mer
Min lærer går litt for raskt gjennom r1 pensum, noe som gjør at jeg trenger repetisjon av de vanskeligste emnene.
Mattevideo har hjulpet meg med å Forstå, ved gode forklaringer og muligheten til å pause underveis i videoene. Jeg har også brukt mattevideo til å løse oppgaver. Før hadde jeg problemer med fremgangsmåten ved oppgaveløsning, men nå har jeg lært dette. Hos mattevideo gjennomgår jeg oppgaver fra hvert kapittel, deretter bruker jeg samme fremgangsmåte på oppgavene fra læreverket.
Hvis du er privatist, anbefaler jeg å bruke mattevideo kapittel for kapittel. Først ser du gjennomgangen av teorien, og deretter prøver du deg på oppgavene (løsningen ligger ute). Dersom du har en lærer i faget, er det kanskje ikke nødvendig å se absolutt alle videoene. Da kan du hoppe rett til de emnene du trenger å lære mer om, eller til oppgavene som han gjennomgår. Absolutt å anbefale. Jeg har lært masse, og fått hjelp før prøver.
Jeg kjøpte medlemskap fordi jeg ønsket forklaring via video og tilgang på "lærer" hele døgnet. Mattevideo er...les mer
Jeg kjøpte medlemskap fordi jeg ønsket forklaring via video og tilgang på "lærer" hele døgnet.
Mattevideo er genialt fordi man kan gå tilbake å se eksempler om og om igjen til man skjønner det. Man kan også bla tilbake til "enklere" relevant pensum hvis man trenger det. Jeg har brukt mattevideo i stedet for forelesninger på universitetet, rett og slett fordi jeg kan følge mitt eget tempo og gå igjennom pensum når jeg trenger det.
Jeg anbefaler å bruke mattevideo på følgende måte: Lag en oversikt over hva du trenger å lære for å bestå eksamen. Sett deretter opp oversikt en i en økende vanskelighetsgrad. Bruk eksempler i boka kombinert med eksempler i videoene. Når du har sett en video, så regn deg gjennom oppgavene du har tilgjengelig. Er du i tvil om du har skjønt det, så se videoen på nytt. Når man har kommet gjennom pensum, så kan man bruke videoene til repetisjon. Denne læreren er tilgjengelig hele døgnet, og blir aldri frustrert hvis du ikke skjønner noe de første gangene pensum gjennomgås:-)
Jeg ble abonnement hos mattevideo fordi jeg slet med å forstå pensum i 1T. Jeg ønsket å prøve, for å se...les mer
Jeg ble abonnement hos mattevideo fordi jeg slet med å forstå pensum i 1T. Jeg ønsket å prøve, for å se om dette kunne være en enklere måte å lære matematikk på.
Jeg har brukt mattevideo på flere måter. Jeg så gjennom temaer på mattevideo kvelden før læreren min gikk gjennom det på skolen. Da kunne jeg litt om temaet på forhånd, fikk mer ut av timen, og hang bedre med enn før. Ellers brukte jeg også mattevideo før og under prøver. Jeg så gjennom videoer 3-4 dager før prøven, noterte viktige forklaringer og oppgaver, og brukte notatene slik at jeg kunne gå tilbake på mattevideo og se videoer under selve prøven (når det var lov å ha med hjelpemidler så klart).
Jeg vil anbefale andre elever å bruke mattevideo på samme måte, da dette fungerte bra for meg. Mattevideo er en god side, med en flink og motivert lærer. Om du sliter med faget på skolen, kan mattevideo være til stor hjelp, du kan se videoer så mange ganger du vil, uten å henge etter! Anbefales til alle:)
Jeg ble medlem for å forbedre meg, og gå dypere inn i spesifikke temaer. Jeg går i 10. klasse og tar forsert løp...les mer
Jeg bruker mattevideo når jeg gjør lekser, for å repetere regnemetoder, eller gjennomgår vanskelige temaer jeg sliter litt med. R2 er et vanskelig fag, med det hjelper meg å repetere temaer og regnemetoder i mitt eget tempo, siden jeg kan se videoene flere ganger og sette læreren på pause når jeg vil.
Mattevideo er en tjeneste som er bra hvis du står litt fast i pensum. Du kan se videoene i alle mattefagene fra 1P til R2. Man kan gå igjennom pensum i sitt eget tempo, og se videoene så mange ganger man vil helt til man skjønner det. I tillegg er det ikke så dyrt, så det er verdt å prøve en måned.
Jeg ble medlem for å forbedre meg, og gå dypere inn i spesifikke temaer. Jeg går i 10. klasse og tar forsert løp...les mer
Jeg ble medlem for å forbedre meg, og gå dypere inn i spesifikke temaer. Jeg går i 10. klasse og tar forsert løp i mattematikk. To ganger i uka tar jeg turen til en videregående skole for ekstra undervisning, men jeg føler at timene der ikke holder, da mine krav til karakterer er på lik linje med de som faktisk går 1. vgs. Derfor måtte jeg ha et tilleggsverktøy, og dermed fant jeg mattevideo.
Jeg har brukt mattevideo hovedsaklig til to ting;
1. Introduksjon til nye temaer. Jeg har brukt mattevideo til å ta en titt på nye temaer før timen, slik at når læreren faktisk går gjennom temaene blir læringen mye enklere. Etter timen bruker jeg også mattevideo til å drille meg selv flere ganger på det vi gjennomgikk. På denne måten ligger jeg et skritt foran de andre.
2. Ta igjen tapt undervisning. Hvis du er borte fra timen på grunn av f. eks sykdom, kan du få den samme tavleundervisningen på mattevideo som de andre hadde i timen. Jeg spør bare klassekameratene mine om hva de gikk gjennom i timen, og finner det på mattevideo. Dette er definitivt det smarteste valget jeg har gjort når det gjelder matte, start med det nå istedenfor å sløve rundt når du heller kan forbedre deg i det morsomste faget på skolen!
Jeg brukte mattevideo da jeg måtte ta opp igjen eksamen, selvlært. Min gamle lærer gjorde det veldig vanskelig å henge med...les mer
Jeg brukte mattevideo da jeg måtte ta opp igjen eksamen, selvlært. Min gamle lærer gjorde det veldig vanskelig å henge med. Han var nok flink i matte, men hadde vanskeligheter med å undervise oss som måtte ha det inn med teskje.
Jeg brukte læreboka kombinert med mattevideo. Først fant jeg temaene jeg slet mest med i boken og prøvde å løse de enkleste oppgavene. Om jeg slet, lette jeg dem opp på mattevideo. Der så jeg videoer med eksempeloppgaver, gjerne den samme videoen om og om igjen. Da videoene var sett, prøvde jeg å løse liknende oppgaver fra boken. Jeg gikk aldri videre til vanskeligere oppgaver før det grunnleggende satt. Dette gjentok jeg noen ganger i uka, og det virket fantastisk for meg.
TIPS: du kommer ikke langt om du ikke har god greie på det grunnleggende, så gå aldri videre på vanskeligere oppgaver før du har full Forståelse for grunnkunnskapen. For meg, og for mange andre, går mattematikk fort i glemmeboken. Derfor gjenntok jeg denne prossessen et par ganger i uka, slik at det til slutt satt som et skudd.
Det beste var at jeg på eksamen faktisk forstod en del oppgaver som jeg ikke hadde løst før, fordi grunnleggende kunnskap var på plass og jeg kunne bruke logisk tankegang på nye temaer. Mange sier at matte er logisk, man må bare knekke koden. Jeg er langt i fra noen ekspert, men for første gang i mitt liv som elev følte jeg at jeg klarte dette litt på egenhånd, og det er takket være enkle, tydelige og strukturerte videoer på mattevideo.no. Jeg bestod til slutt matteeksamen med glans, uten en eneste lærer fysisk i nærheten. Lykke til alle i samme sko! Matte kan faktisk trenes.
Eksamenstid 5 timer
Del 1 (Uten hjelpemidler) skal leveres etter 2 timer.
Del 2 (Med hjelpemidler) skal leveres etter senest 5 timer.
Oppgåve 1 (4 poeng)
Deriver funksjonane
a) f(x)=3cosx
b) g(x)=6sin(π∗x)+7
c) h(x)=3e(2x)∗sin(3x)
Oppgåve 2 (4 poeng)
Bestem integralet ∫x2−42xdx ved å bruke
a) variabelskifte
b) delbrøkoppspalting
Oppgåve 3 (4 poeng)
Punkta A (1,-1,0), B(3,1,1), og C(0,0,0) er gitt.
a) Bestem AB×AC. Bruk resultatet til å bestemme arealet av ΔABC
b) Bestem AB∗AC. Bruk mellom anna dette resultatet til å bestemme arealet av ΔABC
Oppgåve 4 (3 poeng)
Løys differensiallikninga
y' = 6xy når y(0) = 2
Oppgåve 5 (5 poeng)
Ei rekkje er gitt ved
Sn=1+3+5+7+…+an
a) Bestem a16 og S16
b) Forklar at rekkja er aritmetisk, og bruk dette til å finne eit uttrykk for an og Sn.
c) Bestem kor mange ledd rekkja minst må ha for at Sn>400
Oppgåve 6 (2 poeng)
Denne informasjonen er gitt om ein kontinuerleg funksjon f :
• f(x)>0 for alle x∈R
• f(x)>0 for alle x∈<←,−2>∪<2,→>
• f′(x)=0 for x = -2 og for x = 2
• f′(x)=0 for x = 1 og for x = 3
Lag ei skisse som viser korleis grafen til f kan sjå ut.
Oppgåve 7 (2 poeng)
Bruk induksjon til å bevise påstanden
P(n):a+ak+ak2+ak3+…+akn−1=a∗k−1kn−1,n∈N
Oppgåve 1 (4 poeng)
Ein pasient får 8 mL av ein medisin kvar time. Den totale mengda medisin i kroppen t timar etter at medisineringa starta, er y(t) mL. I løpet av ein time skil kroppen ut 5 % av den totale medisinmengda.
a) Forklar at
y′=8−0,05∗y
b) Vis at y(t)=160−160e−0,05t når y (0) = 0
c) Bestem limt→∞y(t). Kommenter svaret.
Oppgåve 2 (6 poeng)
Funksjonen f er gitt ved
f(x)=12e−0,5x∗sin(0,5x),x∈[0,4π]
a) Teikn grafen til f .
b) Bestem eventuelle topp- og botnpunkt på grafen til f.
c) Bestem arealet som er avgrensa av grafen til f og x-aksen.
Oppgåve 3 (8 poeng)
Skissa nedanfor viser ein pyramide OABCD som er plassert i eit romkoordinatsystem.
Hjørna i pyramiden er O(0,0,0) , A(3,0,0) , B(3,3,0) , C(0,3,0) og D(0,0,4)
a) Bestem ved rekning arealet av sideflata ABD i pyramiden.
b) Sideflata ABD ligg i eit plan ?.
Vis ved rekning at planet ? har likninga
4x + 3z - 12 = 0
c) Bestem avstanden frå punktet O til planet ?.
d) Bestem ved rekning vinkelen mellom dei to plana som sideflatene ABD og BCD ligg i.
Oppgåve 4 (6 poeng)
Figuren nedanfor viser ein sirkelsektor OBC der C ligg i første kvadrant. Bogen BC er ein del av sirkelen med likning x2+y2=9. Punktet A har koordinatane (2,0) og ∠OAC=90∘
a) Vis at koordinatane til C er 2,5.
Bestem likninga for den rette linja gjennom O og C.
b) Når flatestykket F1 blir dreidd 360° om x-aksen, får vi ei kjegle.
Bestem volumet av denne kjegla ved hjelp av integralrekning.
c) Når flatestykket F1 blir dreidd 360° om x-aksen, får vi eit kulesegment.
Bestem volumet av dette kulesegmentet ved hjelp av integralrekning.
Oppgåve 5 (6 poeng)
På figuren er eit rektangel med sider x og y skrive inn i ein sirkel. Sirkelen har diameteren D. ?v er vinkelen mellom x og D.
a) Forklar at omkretsen O til rektangelet kan skrivast som
O(v) = 2Dcosv + 2Dsinv
Bestem eit funksjonsuttrykk for arealet A(v) av rektangelet.
b) Bruk O'(v) og vis at det rektangelet som har størst omkrets, er eit kvadrat.
Bestem den største omkretsen av rektangelet uttrykt ved diameteren D.
c) Bruk A'(v) og vis at det rektangelet som har størst areal, også er eit kvadrat.
Bestem det største arealet av rektangelet uttrykt ved diameteren D.
Oppgåve 6 (6 poeng)
Sierpi?ski-trekanten, som har fått namnet sitt etter den polske matematikaren Wac?aw Franciszek Sierpi?ski (1882–1969), lagar vi slik:
1. Vi startar med ein likesida, svart trekant har areal A. Sjå figur 1.
2. Midtpunktet på kvar av sidene i trekanten er hjørna i ein ny kvit, likesida trekant. Denne kvite trekanten fjernar vi. Vi står da igjen med tre likesida, svarte trekantar. Sjå figur 2.
3. Vi gjentek denne prosessen med kvar av dei svarte trekantane. Sjå figurane 3–5. Vi tenkjer oss at prosessen blir utført uendeleg mange gonger. Den «gjennomhola» figuren vi da står igjen med, blir kalla Sierpi?ski-trekanten.
Summen av areala som blir fjerna (dei kvite trekantane), er gitt ved rekkja
A∗(41+163+649+25627+…)
a) Bestem summen av rekkja ovanfor.
Kva fortel svaret ditt om arealet av Sierpi?ski-trekanten?
b) Sidene i trekanten i figur 1 er lik a.
Forklar at omkretsane av dei svarte trekantane i figurane 25? ovanfor er høvesvis
3∗23∗a,3∗49∗a,3∗827∗aog 3∗1681∗a
c) Vi gjer prosessen som forklart i trinn 2 ovanfor n gonger. Forklar at omkretsen av dei svarte trekantane da er lik 3∗(23)n∗a
Forklar at 3∗(23)n∗a→∞ når n→∞
Kva fortel det om omkretsen til Sierpi?ski-trekanten?
Det finnes mange ulike studieteknikker, utfordringen er ofte å finne de som fungerer best for deg. I oversikten under finner du enkelt de beste teknikkene.
Alle våre studietips er laget av vår superelev - med 6 i snitt fra vgs. Ingen av artiklene tar mer enn 5 minutter å lese - slik at du kan starte læringen så fort som mulig.
Hva skjer i hjernen når du lærer?
Du møter noe nytt for første gang
Du kobler den nye tingen med kunnskap du har fra før
I det forrige avsnittet lærte vi om det bestemte integralet. Det var slik at hvis vi har integralet til f av x dx fra a til b, så forstår vi det som arealet under grafen når x går mellom a og b.
+
Quiz section 0
Hva representerer et bestemt integral?
↻
Konstanten C
Lever svar
En funksjon
Lever svar
Arealet under grafen
Lever svar
Oppsummer det viktigste på 1-2-3, klikk her for 10 sekunders quiz
Oppsummer det viktigste på 1-2-3
00:21
Samtidig er det noe som heter det ubestemte integralet.
+
Quiz section 1
Hva heter integralet uten grenser?
↻
Funksjonsintegral
Lever svar
Bestemt integral
Lever svar
Ubestemt integral
Lever svar
00:26
Det kan vi definere slik: Da er det egentlig samme tegn, altså den der litt rare s-en, integral til f av x dx som jeg har skrevet her, men det er ingen
+
Quiz section 2
00:39
grenser opp og ned. Da er det ikke et bestemt integral, men et ubestemt integral, og definisjonen av det integralet er at det er lik en funksjon som vi gjerne skriver som store F, hvis vi har
+
Quiz section 3
Hvordan skrives vanligvis antiderivert funksjon?
↻
C
Lever svar
Liten f
Lever svar
Stor F
Lever svar
00:54
kalt funksjonen vår f av x. Det er for så vidt det samme hva man kaller den, men den funksjonen er slik at når vi deriverer den, så kommer vi tilbake til det vi integrerte.
+
Quiz section 4
Hva skjer når en antiderivert funksjon deriveres?
↻
Man får konstanten C
Lever svar
Man får den opprinnelige funksjonen tilbake
Lever svar
Funksjonen blir negativ
Lever svar
01:07
Derfor sier vi at den funksjonen store F er den antideriverte
+
Quiz section 5
Hva kalles den antideriverte funksjonen?
↻
Liten f
Lever svar
Store F
Lever svar
Konstanten C
Lever svar
01:13
til funksjonen f av x.
+
Quiz section 6
01:16
I tillegg er det med en konstant, bokstaven C. Det er bare en konstant. Vi skal komme tilbake til hvorfor den må være med på lasset, for å si det sånn. Når vi skal finne det ubestemte integralet til en funksjon f av x, må vi antiderivere funksjonen og legge til en konstant.
Hva kalles flaten mellom en funksjonskurve og x-aksen?
Arealet under grafen
Lever svar
Volumet av grafen
Lever svar
Omkretsen av grafen
Lever svar
00:30
Hva definerer grensene for arealet ved et bestemt integral?
De valgte x-verdiene
Lever svar
Funksjonens nullpunkter
Lever svar
Derivasjonens fortegn
Lever svar
00:37
Hva representerer et bestemt integral mellom to punkter?
Arealet under en kurve mellom to x-verdier
Lever svar
Stigningstallet til en kurve
Lever svar
Gjennomsnittlig verdi av en funksjon
Lever svar
00:48
Hva er antiderivert av x i annen?
(1/3) x^3
Lever svar
(1/2) x^2
Lever svar
2x
Lever svar
01:11
Hvorfor inkluderer man ofte en konstant C i ubestemte integraler?
For å fange opp alle mulige antideriverte
Lever svar
For å endre integralets verdi
Lever svar
For å gjøre regningen enklere
Lever svar
01:30
Hva kjennetegner et bestemt integral?
Det har faste integrasjonsgrenser
Lever svar
Det kan ikke regnes ut
Lever svar
Det er alltid lik null
Lever svar
01:39
Hvorfor dropper man konstanten C i et bestemt integral?
Den forsvinner ved differansen mellom grensene
Lever svar
C må alltid være lik 0
Lever svar
Fordi integralet ikke har noen grenser
Lever svar
01:46
Hva gjør man med arealfunksjonen når man beregner et bestemt integral?
Setter inn øvre og nedre grense og tar differansen
Lever svar
Summerer den med x
Lever svar
Deriverer den på nytt
Lever svar
01:53
Hvordan viser man vanligvis at man skal sette inn grenseverdier i den antideriverte?
Ved å bruke hakeparenteser med øvre og nedre grense til høyre
Lever svar
Ved å skrive integralet flere ganger
Lever svar
Ved å sette likhetstegn bak funksjonen
Lever svar
02:23
Hvilken standard notasjon brukes for integrasjonsgrenser i en antiderivert?
Hakeparenteser
Lever svar
Vanlige parenteser
Lever svar
Tuborgparenteser
Lever svar
02:27
Hva menes med "vanlig føring" i matematiske utregninger?
En standardisert skrivemåte for steg og notasjon
Lever svar
Å hoppe over mellomregninger
Lever svar
Å bruke en tilfeldig metode
Lever svar
02:29
Hvordan brukes arealfunksjonen i et bestemt integral?
Man setter inn øvre og nedre grense i funksjonen
Lever svar
Man deriverer den
Lever svar
Man ganger den med x
Lever svar
02:31
Hvordan finner man et bestemt integral mellom to grenser generelt?
Man tar differansen av antiderivert ved de to grensene
Lever svar
Man multipliserer grensene med hverandre
Lever svar
Man legger grensene til funksjonen
Lever svar
02:42
Hva gjør man rett etter at øvre grense er satt inn i den antideriverte?
Trekker fra verdien ved nedre grense
Lever svar
Ganger resultatet med x
Lever svar
Setter integralet lik null
Lever svar
02:53
Hvorfor setter man inn tallverdier for x i antideriverte?
For å finne funksjonens spesifikke verdi ved grensen
Lever svar
For å fjerne behovet for et integraltegn
Lever svar
For å endre funksjonens form
Lever svar
02:55
Hva innebærer x i tredje potens?
At x multipliseres med seg selv tre ganger
Lever svar
At x multipliseres med 3
Lever svar
At x deles på 3
Lever svar
02:59
Hva menes med "arealfunksjonen" i integralregning?
En antiderivert som brukes til å beregne areal
Lever svar
En funksjon som finner nullpunkter
Lever svar
En grafisk representasjon av en ligning
Lever svar
03:01
Hvilket symbol brukes for å uttrykke differanse i matematikk?
Minustegn (-)
Lever svar
Pluss (+)
Lever svar
Gangetegn (×)
Lever svar
03:13
Hva beskriver vanligvis en tidligere video i en undervisningsserie?
Et tidligere forklart tema
Lever svar
Et emne uten relevans
Lever svar
En erstatning for selve pensum
Lever svar
03:16
Hva betyr det at "det bare gjenstår regning" etter at man har satt opp et integral?
At man kun må gjøre enkle algebraiske operasjoner
Lever svar
At man må endre integrasjonsgrensene
Lever svar
At man må derivere funksjonen på nytt
Lever svar
03:24
Hva slags trinn gjenstår ofte etter å ha funnet en antiderivert i et bestemt integral?
En enkel algebraisk utregning
Lever svar
En ny derivasjon
Lever svar
En geometrisk tegning
Lever svar
03:35
Hvordan finner man totalarealet når man har to funksjonsverdier fra antideriverte?
Man trekker den ene fra den andre
Lever svar
Man multipliserer de to verdiene
Lever svar
Man legger verdiene sammen
Lever svar
03:46
Hva betyr det når man sier "men vi kan si det sånn" i en forklaring?
At man oppsummerer eller omformulerer konklusjonen
Lever svar
At man starter på et nytt tema
Lever svar
At man trekker tilbake all informasjon
Lever svar
03:52
Hva vil det si at noe "ligger i forklaringen"?
At det er en del av den logiske gjennomgangen
Lever svar
At det er helt utenfor tema
Lever svar
At det må regnes ut separat
Lever svar
03:55
Hva menes med "måten å gjøre det på" i en matematisk sammenheng?
En metode eller fremgangsmåte for utregning
Lever svar
En tilfeldig gjetning
Lever svar
En fastsatt definisjon av en ny funksjon
Lever svar
03:58
Er integrasjon en vanlig del av matematikk?
Ja
Lever svar
Nei
Lever svar
Vet ikke
Lever svar
00:00
Forenkler delbrøker integrasjon?
Ja
Lever svar
Nei
Lever svar
Kanskje
Lever svar
00:09
Er delbrøksoppspalting nyttig for rasjonale uttrykk?
Ja
Lever svar
Nei
Lever svar
Vet ikke
Lever svar
00:24
Er regler viktige i matematisk arbeid?
Ja
Lever svar
Nei
Lever svar
Usikker
Lever svar
00:26
Kan en regel for 1/(x+a) brukes ved integrasjon?
Ja
Lever svar
Nei
Lever svar
Vet ikke
Lever svar
00:28
Er ln(x+a) et vanlig resultat ved integrasjon?
Ja
Lever svar
Nei
Lever svar
Vet ikke
Lever svar
00:34
Kan vi dele opp et integral for å forenkle?
Ja
Lever svar
Nei
Lever svar
Usikker
Lever svar
00:50
Kan en konstant trekkes ut av et integral?
Ja
Lever svar
Nei
Lever svar
Vet ikke
Lever svar
01:03
Brukes absolutte verdier i logaritmer ved integrasjon?
Ja
Lever svar
Nei
Lever svar
Kanskje
Lever svar
01:22
Fører et minusfortegn ofte til et negativt ledd i svaret?
Ja
Lever svar
Nei
Lever svar
Vet ikke
Lever svar
01:28
Hva trenger man for å legge sammen to brøker?
Samme teller
Lever svar
Fellesnevner
Lever svar
Minste heltall
Lever svar
00:00
Hva kalles tallet over brøkstreken?
Teller
Lever svar
Nevner
Lever svar
Produkt
Lever svar
00:22
Hva er målet med delbrøksoppspalting?
Å multiplisere to brøker
Lever svar
Å dele en sammensatt brøk i enklere deler
Lever svar
Å finne en eksakt tallverdi
Lever svar
00:32
Hva er et nyttig steg før integrasjon av en komplisert brøk?
Delbrøksoppspalting
Lever svar
Å legge sammen brøker
Lever svar
Å ignorere nevneren
Lever svar
01:09
Hva kalles tallene man ikke kjenner i en brøkoppdeling?
Variabler (a og b)
Lever svar
Konstanter
Lever svar
Operatorer
Lever svar
01:20
Hva kan en av de ukjente i en oppdelt brøk vise seg å være?
Et positivt eller negativt tall
Lever svar
Alltid null
Lever svar
Alltid større enn 10
Lever svar
01:42
Kan man alltid vite de ukjente tallene i en brøk på forhånd?
Nei
Lever svar
Ja
Lever svar
Kun ved hoderegning
Lever svar
01:49
Hva gjør man når man ikke vet tallene i en brøkoppdeling?
Man kaller dem for a og b
Lever svar
Man fjerner brøken
Lever svar
Man gjetter tilfeldig
Lever svar
01:51
Hva kalles en brøkdel som inneholder x og en konstant?
Et ledd
Lever svar
Et produkt
Lever svar
En sum
Lever svar
01:56
Hva kalles uttrykket under brøkstreken?
Nevner
Lever svar
Teller
Lever svar
Integrand
Lever svar
02:00
Hva kalles uttrykket over brøkstreken?
Teller
Lever svar
Nevner
Lever svar
Sum
Lever svar
02:02
Hva gjør man for å fjerne en brøks nevner?
Man multipliserer med fellesnevneren
Lever svar
Man legger til 1
Lever svar
Man dividerer med telleren
Lever svar
02:11
Hvilket ledd i en brøk forsvinner når vi multipliserer med hele nevneren?
Nevneren
Lever svar
Telleren
Lever svar
Faktorene i telleren
Lever svar
02:18
Hva kaller vi prosessen der nevneren blir «forkortet» vekk?
Forkorting
Lever svar
Strekking
Lever svar
Rotering
Lever svar
02:21
Hva er hensikten med å forkorte en brøk?
Å forenkle uttrykket
Lever svar
Å øke verdien
Lever svar
Å fjerne x
Lever svar
02:34
Hva pleier å skje med nevnerne når vi multipliserer med fellesnevneren?
De kanselleres
Lever svar
De dobles
Lever svar
De blir negative
Lever svar
02:39
Hva kalles prosessen med å skrive et uttrykk i forenklet form?
Renskriving
Lever svar
Faktorisering
Lever svar
Integrering
Lever svar
02:43
Hva står igjen når vi har forkortet brøken fullstendig?
Bare telleren
Lever svar
Bare nevneren
Lever svar
Et helt tall
Lever svar
02:45
Hva kalles en ukjent konstant i en ligning?
En variabel
Lever svar
En brøk
Lever svar
En eksponent
Lever svar
02:52
Hva gjør vi når vi multipliserer en konstant inn i en parentes?
Vi distribuerer konstanten
Lever svar
Vi fjerner x
Lever svar
Vi deler alt på 2
Lever svar
02:55
Kan en ukjent i en brøkoppdeling kalles for bokstaven «b»?
Ja
Lever svar
Nei
Lever svar
Bare om x=0
Lever svar
03:08
Hva kan man gjøre for å oversiktliggjøre et brøkuttrykk?
Rydde opp i det algebraisk
Lever svar
Fjern x
Lever svar
Telle bare med hodet
Lever svar
03:10
Hvilken del av et uttrykk inneholder som regel x?
Det variable leddet
Lever svar
Det konstante leddet
Lever svar
Det kvadratiske leddet
Lever svar
03:16
Hva kan x representere i en ligning?
En ukjent verdi
Lever svar
Alltid tallet 1
Lever svar
En fast koeffisient
Lever svar
03:19
Hva symboliserer «=» i en ligning?
Likhetstegn
Lever svar
Summetegn
Lever svar
Fortegn
Lever svar
03:22
Hva kalles summen av a x og b x?
(a + b) · x
Lever svar
(a - b) · x
Lever svar
2ab
Lever svar
03:23
Hva kalles prosessen når vi tar ut x som en felles faktor?
Faktorisering
Lever svar
Divisjon
Lever svar
Invertering
Lever svar
03:33
Hva betyr det å skrive et uttrykk på en «sånn» form?
Å omskrive uttrykket
Lever svar
Å slette x
Lever svar
Å gjøre alt om til brøker
Lever svar
03:36
Hvilke deler består et algebraisk uttrykk av?
Variable og konstante ledd
Lever svar
Kun tall
Lever svar
Kun bokstaver
Lever svar
03:40
Hva kalles tallene som ikke ganger x i et uttrykk?
Konstante ledd
Lever svar
Variabler
Lever svar
Parametere
Lever svar
03:45
Hva betyr tegnet «=» i en likning?
At venstre og høyre side er like
Lever svar
At venstre side er større
Lever svar
At høyre side er mindre
Lever svar
03:49
Hva kalles uttrykket (a + b)x + (a - 2b)?
En omskrevet form av brøken
Lever svar
En differens
Lever svar
En integralverdi
Lever svar
03:56
Hva sammenlignes på venstre og høyre side av «=»?
Koeffisienter og konstanter
Lever svar
Bare konstanter
Lever svar
Bare x
Lever svar
04:00
Hva kalles tallet som multipliserer x i et uttrykk?
Koeffisient
Lever svar
Konstantledd
Lever svar
Nevner
Lever svar
04:05
Hva må koeffisientene være hvis vi har 2x på venstre side?
Summen av dem må bli 2
Lever svar
De må alle være 1
Lever svar
De kan ikke brukes
Lever svar
04:17
Hva kalles tallet uten x i et uttrykk?
Konstantledd
Lever svar
Koeffisient
Lever svar
Eksponent
Lever svar
04:25
Hvor mange ukjente er det i et enkelt to-ligningssystem?
To
Lever svar
Én
Lever svar
Tre
Lever svar
04:49
Kan man bruke kalkulator for å løse to ligninger med to ukjente?
Ja
Lever svar
Nei
Lever svar
Kun i hodet
Lever svar
04:53
Hva er en enkel definisjon på et ligningssett?
Flere likninger som løses samtidig
Lever svar
En brøk med x
Lever svar
En sum av brøker
Lever svar
05:04
Hva skjer ofte når man løser et ligningssett med to ukjente?
Man finner verdier for begge ukjente
Lever svar
Man ender med uendelig mange løsninger
Lever svar
Man kan ikke løse det
Lever svar
05:09
Kan en av de ukjente bli et negativt tall?
Ja
Lever svar
Nei
Lever svar
Bare hvis x=0
Lever svar
05:12
Bør man alltid kontrollregne løsningen sin?
Ja, om mulig
Lever svar
Nei, aldri
Lever svar
Kun i teori
Lever svar
05:14
Hva kan a være hvis a ble funnet til å være 3?
En koeffisient
Lever svar
En teller
Lever svar
Et brøkstykke
Lever svar
05:19
Hva kan b være hvis b ble funnet til å være -1?
En koeffisient
Lever svar
En teller
Lever svar
Et produkt
Lever svar
05:23
Hva betyr det at «(2x + 5) / (2x + 1)» er lik a?
At brøken kan uttrykkes med en bestemt konstant i toppen
Lever svar
At x=0
Lever svar
At brøken ikke har noen verdi
Lever svar
05:25
Kan «a» være 3 i en delbrøksoppspalting?
Ja
Lever svar
Nei
Lever svar
Bare hvis man ikke bruker kalkulator
Lever svar
05:46
Hva kalles uttrykket 3/(x-2)?
En enkel brøk
Lever svar
En sum
Lever svar
En integrert funksjon
Lever svar
05:48
Hva kalles det å legge sammen 3/(x-2) og -1/(x+1)?
En sammensatt brøk
Lever svar
En kvotient
Lever svar
En heltallsdivisjon
Lever svar
05:52
Hva betyr et minus foran en brøk?
At brøken er negativ
Lever svar
At brøken blir null
Lever svar
At x=1
Lever svar
05:57
Kan brøker med ulike nevnere deles opp i sum av enklere brøker?
Ja, ved delbrøksoppspalting
Lever svar
Nei, aldri
Lever svar
Bare hvis x er negativ
Lever svar
06:03
Hva er første steg i å lære delbrøksoppspalting?
Å splitte en brøk i to enklere brøker
Lever svar
Å gange alt med 0
Lever svar
Å fjerne x fullstendig
Lever svar
06:12
Kan man skrive en komplisert brøk som to separate brøker?
Ja
Lever svar
Nei
Lever svar
Bare i spesielle tilfeller
Lever svar
06:21
Hva handler videoen om?
Delvis integrasjon
Lever svar
Derivasjon
Lever svar
Algebraiske uttrykk
Lever svar
00:00
Hva må man gjøre i delvis integrasjon?
Velge u og v
Lever svar
Kun derivere
Lever svar
Kun integrere
Lever svar
00:07
Hva må du velge først i delvis integrasjon?
Hva som er u og v
Lever svar
Kun hva som er u
Lever svar
Kun hva som er v
Lever svar
00:25
Hva trenger man i tillegg til u og v?
u-derivert og v-derivert
Lever svar
Kun u-derivert
Lever svar
Kun v-derivert
Lever svar
00:35
Hva skjer når du deriverer 2x?
Får x²
Lever svar
Får 2
Lever svar
Får ½x
Lever svar
00:40
Hvorfor kan man ikke antiderivere direkte?
Produktet er for komplisert
Lever svar
Uttrykket er for enkelt
Lever svar
Det er ingen produkter
Lever svar
01:34
Hva gjøres når første valg mislykkes?
Velger på nytt
Lever svar
Gir opp
Lever svar
Velger samme på nytt
Lever svar
02:08
Hva velges nå som u-derivert?
eˣ
Lever svar
2x
Lever svar
x²
Lever svar
02:24
Hva er resultatet av u ganger v?
2x eˣ
Lever svar
x² eˣ
Lever svar
2 eˣ
Lever svar
03:01
Hva skjer når integralet er enklere?
Det kan løses direkte
Lever svar
Det må velges på nytt
Lever svar
Det blir vanskeligere
Lever svar
03:29
Hva er integralet av eˣ?
eˣ
Lever svar
xeˣ
Lever svar
2eˣ
Lever svar
03:49
Hva er målet med delvis integrasjon?
Gjøre integralet enklere
Lever svar
Lage det mer komplisert
Lever svar
Unngå integrasjon
Lever svar
04:03
Når lykkes delvis integrasjon?
Når riktig valg gjøres
Lever svar
Aldri
Lever svar
Når integralet blir vanskeligere
Lever svar
04:18
Er delvis integrasjon en metode innen integrasjon?
Nei
Lever svar
Ja
Lever svar
Vet ikke
Lever svar
00:00
Gir delvis integrasjon en formel for integraler av produkt?
Nei
Lever svar
Ja
Lever svar
Usikkert
Lever svar
00:09
Stammer delvis integrasjon fra produktregelen for derivasjon?
Nei
Lever svar
Ja
Lever svar
Kanskje
Lever svar
00:32
Er produktregelen et kjent verktøy i flere matematikkurs?
Nei
Lever svar
Ja
Lever svar
Vet ikke
Lever svar
00:58
Kan man flytte et ledd fra én side av en likning til den andre?
Nei
Lever svar
Ja
Lever svar
Bare noen ganger
Lever svar
01:01
Krever omstokking av ledd algebraiske operasjoner?
Nei
Lever svar
Ja
Lever svar
Av og til
Lever svar
01:06
Foregår en matematisk utledning ofte i flere trinn?
Nei
Lever svar
Ja
Lever svar
Vet ikke
Lever svar
01:18
Betyr antiderivasjon å finne funksjonen før den ble derivert?
Nei
Lever svar
Ja
Lever svar
Bare noen ganger
Lever svar
01:20
Kan man antiderivere hvert enkelt ledd i et uttrykk?
Nei
Lever svar
Ja
Lever svar
Bare i noen tilfeller
Lever svar
01:25
Legger vi til en konstant når vi finner et ubestemt integral?
Nei
Lever svar
Ja
Lever svar
Bare noen ganger
Lever svar
01:34
Hvis to uttrykk er like, er også deres ubestemte integraler like?
Nei
Lever svar
Ja
Lever svar
Vet ikke
Lever svar
01:41
Gir identiske uttrykk identiske resultater?
Nei
Lever svar
Ja
Lever svar
Bare av og til
Lever svar
01:51
Er identitet mellom to uttrykk en form for likhet?
Nei
Lever svar
Ja
Lever svar
Kanskje
Lever svar
01:58
Kan antiderivasjon oppheve en derivasjon?
Nei
Lever svar
Ja
Lever svar
Bare i spesielle tilfeller
Lever svar
02:03
Finnes det en spesifikk regel for delvis integrasjon?
Nei
Lever svar
Ja
Lever svar
Vet ikke
Lever svar
02:23
Kan vi bruke delvis integrasjon praktisk?
Nei
Lever svar
Ja
Lever svar
Ikke i det hele tatt
Lever svar
02:26
Hvilket tema diskuteres?
Gjennomsnittsverdi for en funksjon
Lever svar
Matrisealgebra
Lever svar
Vektorer
Lever svar
00:00
Hva henger gjennomsnittsverdi sammen med?
Grenseverdier
Lever svar
Integraler
Lever svar
Tangenter
Lever svar
00:05
Hvilket matematisk verktøy nevnes?
Polynomdivisjon
Lever svar
Integral
Lever svar
Komplekse tall
Lever svar
00:12
Hva er markert mellom A og B?
Et område
Lever svar
En tangent
Lever svar
En punktserie
Lever svar
00:19
Hvilken funksjon omtales i den røde delen av grafen?
f(x)
Lever svar
g(x)
Lever svar
h(x)
Lever svar
00:20
Hva omtales igjen her?
Funksjonen
Lever svar
Konstanten
Lever svar
Variabelen
Lever svar
00:33
Hva lurer vi på i dette intervallet?
Gjennomsnittsverdien
Lever svar
Nullpunktet
Lever svar
Maksimumsverdien
Lever svar
00:42
Hvilket ord brukes synonymt med gjennomsnittsverdi?
Gjennomsnittshøyde
Lever svar
Gjennomsnittsgraf
Lever svar
Gjennomsnittstrend
Lever svar
00:43
Hva brukes som grunnlinje for rektangelet?
B minus A
Lever svar
A pluss B
Lever svar
A delt på B
Lever svar
00:46
Hva dukker opp i illustrasjonen?
Et rektangel
Lever svar
En trekant
Lever svar
En sirkel
Lever svar
01:01
Hva kan justeres for å matche arealet under grafen?
Høyden
Lever svar
Bredde
Lever svar
Omkrets
Lever svar
01:08
Hvilket begrep nevnes?
Integral
Lever svar
Derivert
Lever svar
Grenseverdi
Lever svar
01:25
Hva skal rektangelets areal tilsvare?
Arealet under grafen
Lever svar
Arealet av trekanten
Lever svar
Summen av koeffisientene
Lever svar
01:30
Hvilken matematisk likhet beskrives?
Rektangelareal = areal under grafen
Lever svar
Summen av to funksjoner = integralet
Lever svar
Gjennomsnitt av data = standardavvik
Lever svar
01:50
Hvilken betingelse nevnes for grafen?
Den er positiv
Lever svar
Den er stigende
Lever svar
Den er periodisk
Lever svar
02:11
Hva byttes ut med b - a?
Grunnlinjen
Lever svar
Toppunktet
Lever svar
Gjennomsnittet
Lever svar
02:20
Hva gjør vi for å finne høyden?
Deler på (b - a)
Lever svar
Trekker fra (b - a)
Lever svar
Legger til (b - a)
Lever svar
02:30
Hva fører regnestykket til?
En formel for høyden
Lever svar
En formel for volum
Lever svar
En formel for hastighet
Lever svar
02:39
Hvordan oppnås riktig høyde?
Ved å gjøre arealene like
Lever svar
Ved å øke bredden
Lever svar
Ved å senke grafen
Lever svar
02:46
Hva representerer H?
Gjennomsnittsverdi til f
Lever svar
Maksverdi til f
Lever svar
Nullverdi til f
Lever svar
03:25
Hva omtales når vi snakker om lengden av en graf?
Summen av x-verdier
Lever svar
Avstanden langs kurven
Lever svar
Volumet under aksen
Lever svar
00:00
Hva kalles et lite stykke av en kurve?
En tangent
Lever svar
Et grafsegment
Lever svar
En akse
Lever svar
00:03
Hva spør man ofte om når man møter et nytt begrep?
Hvordan det staves
Lever svar
Hva det betyr
Lever svar
Hvem som fant det opp
Lever svar
00:07
Hva kalles området mellom x=A og x=B?
En avledning
Lever svar
Et intervall
Lever svar
Et bunnpunkt
Lever svar
00:11
Hva beskriver uttrykket “hvor langt” i matematikk?
Retningen
Lever svar
Avstanden
Lever svar
Farten
Lever svar
00:28
Hvilket teorem bruker vi for å finne hypotenusen i en rettvinklet trekant?
Pascals setning
Lever svar
Pytagoras
Lever svar
Eulers formel
Lever svar
00:31
Hva kalles en endring i funksjonsverdi?
Phi
Lever svar
Delta f
Lever svar
Alfa
Lever svar
00:46
Hva betyr det å faktorisere ut Δx²?
Å legge sammen alle leddene
Lever svar
Å ta Δx² utenfor en parentes
Lever svar
Å dele alt på x
Lever svar
01:13
Hva kalles det når vi tar ut en felles faktor fra et uttrykk?
Ekspansjon
Lever svar
Faktorisering
Lever svar
Konjugering
Lever svar
01:30
Hva må ofte justeres i en brøk når vi trekker ut en faktor?
Telleren
Lever svar
Nevneren
Lever svar
Enheten
Lever svar
01:48
Hvilket kort ord kan antyde at noe er ferdig eller forklart?
Deriv
Lever svar
Sånn
Lever svar
Sum
Lever svar
02:00
Hva er kvadratroten av et tall i andre potens?
0
Lever svar
Tallet selv
Lever svar
Tallet ganget med 2
Lever svar
02:02
Hvilken enhet kan brukes for å måle areal?
Liter
Lever svar
km²
Lever svar
Newton
Lever svar
02:17
Er en rett linje alltid lik lengden til en kurve?
Ja, alltid
Lever svar
Nei
Lever svar
Bare hvis kurven er en sirkel
Lever svar
02:26
Hva skjer når vi deler et intervall i mange små biter?
Ingenting endres
Lever svar
Vi får mange små segmenter
Lever svar
Vi mister hele funksjonen
Lever svar
02:41
Hva gjør vi med de rette linjesegmentene når vi vil finne total lengde?
Vi trekker dem fra hverandre
Lever svar
Vi summerer dem
Lever svar
Vi ganger dem med pi
Lever svar
02:50
Hva kalles en liten endring i x?
Sigma x
Lever svar
Delta x
Lever svar
Beta x
Lever svar
03:01
Hva er (b − a)/n?
(a + b)/n
Lever svar
(b − a)/n
Lever svar
(b − a)*n
Lever svar
03:08
Hva skjer med Δx når antall segmenter øker?
Den blir større
Lever svar
Den blir mindre
Lever svar
Den forblir uendret
Lever svar
03:23
Hva skjer med et polygonstrekk når antall segmenter øker?
Det forsvinner
Lever svar
Det nærmer seg kurvens form
Lever svar
Det blir helt flatt
Lever svar
03:34
Når er et lite rett linjestykke omtrent like langt som en bitteliten kurve?
Når Δx er stor
Lever svar
Når Δx er svært liten
Lever svar
Når vi ikke deler opp
Lever svar
03:52
Hvilken norsk frase kan bety “greit” eller “forstått”?
Hei
Lever svar
Ja vel
Lever svar
Nei takk
Lever svar
04:01
Hva kalles prosessen å legge sammen flere ledd?
Differensiering
Lever svar
Summering
Lever svar
Divisjon
Lever svar
04:04
Hva betyr “limit når n går mot uendelig”?
At n blir null
Lever svar
At n blir veldig stort
Lever svar
At n blir negativt
Lever svar
04:11
Kan et dataprogram håndtere mange repetisjoner?
Nei
Lever svar
Ja
Lever svar
Kun i teorien
Lever svar
04:29
Hva må vi gjøre for å finne total lengde av mange små linjestykker?
Trekke dem fra hverandre
Lever svar
Legge dem sammen
Lever svar
Lage en ny funksjon
Lever svar
04:35
Hva kalles grenseverdien av (Δf / Δx) når Δx → 0?
Integral
Lever svar
Derivert
Lever svar
Konstantledd
Lever svar
04:54
Hvilken type sum blir et bestemt integral i grensen?
Omvendt funksjon
Lever svar
Riemann-sum
Lever svar
Summering av logaritmer
Lever svar
05:17
Hva kan et bestemt integral representere?
Volumet av en sirkel
Lever svar
Lengden av en kurve
Lever svar
Tyngden av en gjenstand
Lever svar
05:41
Er en konstant en verdi som ikke endres?
Nei
Lever svar
Ja
Lever svar
Vet ikke
Lever svar
00:00
Betyr "ubestemt" at noe ikke er fast definert?
Nei
Lever svar
Ja
Lever svar
Usikker
Lever svar
00:16
Er et variabelskifte et bytte av en størrelse i en beregning?
Nei
Lever svar
Ja
Lever svar
Kun av og til
Lever svar
00:20
Er "u" ofte brukt som symbol i matematikk?
Aldri
Lever svar
Ja
Lever svar
Bare i geometri
Lever svar
00:36
Er en variabel en bokstav som kan endres i en ligning?
Nei
Lever svar
Ja
Lever svar
Bare i statistikk
Lever svar
00:44
Kan man dele på en ikke-null konstant i en ligning?
Nei
Lever svar
Ja
Lever svar
Vet ikke
Lever svar
00:49
Er "innsetting" å erstatte en variabel med en verdi?
Nei
Lever svar
Ja
Lever svar
Vet ikke
Lever svar
01:06
Indikerer "dele på" en divisjon?
Nei
Lever svar
Ja
Lever svar
Vet ikke
Lever svar
01:11
Kan "u" være en ny variabel i et regnestykke?
Nei
Lever svar
Ja
Lever svar
Vet ikke
Lever svar
01:16
Kan man bytte ut x med u i en formel?
Nei
Lever svar
Ja
Lever svar
Vet ikke
Lever svar
01:21
Er deling på b en form for matematisk operasjon?
Nei
Lever svar
Ja
Lever svar
Vet ikke
Lever svar
01:24
Kan en variabel ha en annen rolle enn en konstant?
Nei
Lever svar
Ja
Lever svar
Vet ikke
Lever svar
01:28
Kan en konstant faktor ofte flyttes ut av en operasjon?
Aldri
Lever svar
Ja
Lever svar
Kun i geometri
Lever svar
01:36
Er ln en funksjon for logaritmer?
Nei
Lever svar
Ja
Lever svar
Vet ikke
Lever svar
01:45
Er C vanlig å bruke som konstant i matematikk?
Nei
Lever svar
Ja
Lever svar
Vet ikke
Lever svar
02:14
Betyr "komme i mål" at man er ferdig?
Nei
Lever svar
Ja
Lever svar
Vet ikke
Lever svar
02:30
Det ubestemte integralet ∫f(x)dx er det samme som
Arealet mellom grafen og x-aksen
Lever svar
Arealet mellom grafen og y-aksen
Lever svar
Den antideriverte til f.
Lever svar
×
Takk for at du forsøkte, men dette er feil svaralternativ.
Tilbakestill oppgaven som uløst
×
Takk for at du forsøkte, men dette er feil svaralternativ.
Tilbakestill oppgaven som uløst
×
Riktig svar!
Siden da får man en funksjon for arealet under grafen opp til x.
Tilbakestill oppgaven som uløst
Bestem integralene:
a) ∫(x4−x2)dx
b) ∫4x⋅e−x2dx
c) ∫x2−2x−34dx
4x3−2x+C
Lever svar
51x5−31x3+C
Lever svar
x5−x3+C
Lever svar
×
Takk for at du forsøkte, men dette er feil svaralternativ.
Tilbakestill oppgaven som uløst
×
Riktig svar!
(\frac{1}{5}x^5)\' = x^4
(\frac{1}{3}x^3)\' = x^2
Tilbakestill oppgaven som uløst
×
Takk for at du forsøkte, men dette er feil svaralternativ.
Tilbakestill oppgaven som uløst
Bestem integralene:
a) ∫(x4−x2)dx
b) ∫4x⋅e−x2dx
c) ∫x2−2x−34dx
log∣x−3∣−log∣x+1∣+C
Lever svar
2(x−1)4+C
Lever svar
Det eksisterer ikke.
Lever svar
×
Riktig svar!
Har at
x2−2x−3=(x+1)(x−3)
Bruker så delbrøksoppspalting
x+1A+x−3B=(x+1)(x−3)4
A(x−3)+B(x+1)=4
x=−1→A=−1x=3→B=1
Dette gjør at
∫x2−2x−34=∫x−31−∫x+11=log∣x−3∣−log∣x+1∣+C
Tilbakestill oppgaven som uløst
×
Takk for at du forsøkte, men dette er feil svaralternativ.
Tilbakestill oppgaven som uløst
×
Takk for at du forsøkte, men dette er feil svaralternativ.
Tilbakestill oppgaven som uløst
Bestem integralene:
a) ∫(x4−x2)dx
b) ∫4x⋅e−x2dx
c) ∫x2−2x−34dx
2x2e−x2+C
Lever svar
4e−x2−8x2e−x2+C
Lever svar
−2e−x2
Lever svar
×
Takk for at du forsøkte, men dette er feil svaralternativ.
Tilbakestill oppgaven som uløst
×
Takk for at du forsøkte, men dette er feil svaralternativ.
Tilbakestill oppgaven som uløst
×
Riktig svar!
Bruker substitusjon ved å sette
u = -x^2 \ , \ u\' = -2x
Ved substitusjon så må man bytte hva man tar integral over, altså man må endre dx til du
Dette gjør man ved at
du=udˊx
dx = \frac{du}{u\'}
Setter dette inn og regner ut
∫4xe−x2dx=∫4xeu−2xdu=∫−2eudu=−2e−x2+C
Tilbakestill oppgaven som uløst
Den DERIVERTE til ln(x) er..
ln(1) (dvs null)
Lever svar
[1/x
Lever svar
ln(x) kan ikke deriveres
Lever svar
×
Takk for at du forsøkte, men dette er feil svaralternativ.
Tilbakestill oppgaven som uløst
×
Riktig svar!
Dette må man bare huske.
Tilbakestill oppgaven som uløst
×
Takk for at du forsøkte, men dette er feil svaralternativ.
Tilbakestill oppgaven som uløst
∫x2dx = ..?
2x
Lever svar
(1/3)x3
Lever svar
(1/3)x3+C
Lever svar
×
Takk for at du forsøkte, men dette er feil svaralternativ.
Tilbakestill oppgaven som uløst
×
Takk for at du forsøkte, men dette er feil svaralternativ.
Tilbakestill oppgaven som uløst
×
Riktig svar!
Siden den deriverte blir x i andre.
Tilbakestill oppgaven som uløst
Finn integralene
a) ∫(cosx+x1)dx
b) ∫x⋅e2xdx
c) ∫x2−2x−22x−2dx
sinx+ln∣x∣+C
Lever svar
−sinx+ln∣x∣+C
Lever svar
cosx+lnx+C
Lever svar
×
Riktig svar!
Riktig!
Tilbakestill oppgaven som uløst
×
Takk for at du forsøkte, men dette er feil svaralternativ.
Tilbakestill oppgaven som uløst
×
Takk for at du forsøkte, men dette er feil svaralternativ.
Tilbakestill oppgaven som uløst
Figur 1 nedenfor viser grafen til funksjonen f gitt ved
f(x)=x1,x∈[1,a]
Vi dreier grafen til f 360o om x-aksen. Vi får da fram et omdreiningslegeme som vist på figur 2.
a) Bestem volumet V(a) av omdreiningslegemet.
b) Bestem ∫1af(x)dx. Omdreiningslegemet har overflateareal O(a). Forklar at O(a)>∫1af(x)dx.
c) Vi lar a→∞ Det omdreiningslegemet vi da får, kalles Gabriels horn.
Bestem lima→∞O(a) og lima→∞V(a) dersom grenseverdiene eksisterer. kommenter svarene.
−a21
Lever svar
lna1
Lever svar
lna
Lever svar
×
Takk for at du forsøkte, men dette er feil svaralternativ.
Tilbakestill oppgaven som uløst
×
Takk for at du forsøkte, men dette er feil svaralternativ.
Tilbakestill oppgaven som uløst
×
Riktig svar!
∫1af(x)dx=∫1ax1dx=[lnx]1a=lna−ln1=lna
Overflatearealet O(a) er hele arealet til omdreiningslegemet, mens ∫1af(x)dx kun er verdien til skjæringspunktene mellom omdreiningslegemet og xy−planet.
⇒O(a)>∫1af(x)dx
Hvilket skulle vises.
Tilbakestill oppgaven som uløst
Vi har en funksjon f(x) som er negativ i hele intervallet [2,4]. Da vil ∫24f(x)dx være lik
Arealet avgrenset av grafen, x-aksen, og linjene x = 2 og x = 4.
Lever svar
Minus arealet avgrenset av grafen, x-aksen, og linjene x = 2 og x = 4.
Lever svar
ikke kunne regnes ut siden f var negativ.
Lever svar
×
Takk for at du forsøkte, men dette er feil svaralternativ.
Tilbakestill oppgaven som uløst
×
Riktig svar!
Siden arealet under x-asken er negativt.
Tilbakestill oppgaven som uløst
×
Takk for at du forsøkte, men dette er feil svaralternativ.
Tilbakestill oppgaven som uløst
Gitt funksjonen f(x)=x2. Hvor stort er arealet avgrenset av grafen, x-aksen og linjene x = 0 og x = 2
Takk for at du forsøkte, men dette er feil svaralternativ.
Tilbakestill oppgaven som uløst
×
Takk for at du forsøkte, men dette er feil svaralternativ.
Tilbakestill oppgaven som uløst
Vi har en kontinuerlig funksjon f(x) og den antiderivert funksjonen F(x) . Når er det riktig å si at ∣F(b)−F(a)∣ representerer arealet avgrenset av grafen til f, x-aksen og linjene x=a og x = b ?
Alltid.
Lever svar
Så lenge hele grafen ligger over x-ksen
Lever svar
Så lenge grafen ikke skjærer x-aksen i intervallet a til b.
Lever svar
×
Takk for at du forsøkte, men dette er feil svaralternativ.
Tilbakestill oppgaven som uløst
×
Takk for at du forsøkte, men dette er feil svaralternativ.
Tilbakestill oppgaven som uløst
×
Riktig svar!
Fordi da skifter F(x) fortegn.
Tilbakestill oppgaven som uløst
Vi har en funksjon f(x) som er negativ i intervallet a til b, og har også funnet en antiderivert funksjon F(x) . Hvilket uttrykk representerer IKKE arealet avgrenset av x-aksen, grafen til f og linjene x = a og x = b, der a < b ?
F(a) - F(b)
Lever svar
F(b) - F(a)
Lever svar
∣F(a)−F(b)∣
Lever svar
×
Riktig svar!
Dette blir negativt. Et areal kan ikke være negativt, så dette representerer ikke arealet.
Tilbakestill oppgaven som uløst
×
Takk for at du forsøkte, men dette er feil svaralternativ.
Tilbakestill oppgaven som uløst
×
Takk for at du forsøkte, men dette er feil svaralternativ.
Tilbakestill oppgaven som uløst
Hva går delvis integrasjon ut på?
Bruke derivasjonsregelen for produkt "baklengs"
Lever svar
Integrere i to trinn
Lever svar
Integrerer bare det som er positivt.
Lever svar
×
Riktig svar!
Da får man splittet integralet i to ledd.
Tilbakestill oppgaven som uløst
×
Takk for at du forsøkte, men dette er feil svaralternativ.
Tilbakestill oppgaven som uløst
×
Takk for at du forsøkte, men dette er feil svaralternativ.
Tilbakestill oppgaven som uløst
Deriver funksjonene
a) ∫12(x2+2x−3)dx
b) ∫x2−x−23xdx
c) ∫x⋅lnxdx
2x2(lnx−21)+C
Lever svar
2x2(lnx+21)+C
Lever svar
2x2(lnx)
Lever svar
×
Riktig svar!
Vi bruker delvis integrasjon.
∫x⋅lnxdx=2x2⋅lnx−∫2x2⋅x1dx=2x2⋅lnx−21∫xdx=2x2⋅lnx−21⋅21x2+C=2x2(lnx−21)+C
Tilbakestill oppgaven som uløst
×
Takk for at du forsøkte, men dette er feil svaralternativ.
Tilbakestill oppgaven som uløst
×
Takk for at du forsøkte, men dette er feil svaralternativ.
Tilbakestill oppgaven som uløst
Kan vi bruke delbrøksoppspalting til å integrere funksjonen (x−1)(x+2)x2 ?
Ja
Lever svar
Nei
Lever svar
Ja, men vi må først ta en runde med polynomdivisjon, og deretter ta delbrøksoppspalting på resten.
Lever svar
×
Takk for at du forsøkte, men dette er feil svaralternativ.
Tilbakestill oppgaven som uløst
×
Takk for at du forsøkte, men dette er feil svaralternativ.
Tilbakestill oppgaven som uløst
×
Riktig svar!
Siden nevneren ikke har en høyere grad av x enn telleren.
Tilbakestill oppgaven som uløst
Hvilket ubestemt integral kan vi enklest regne ut ved hjelp av delbrøksoppspalting?
∫cos(x2)2xdx
Lever svar
∫x2−12dx
Lever svar
∫2x⋅lnxdx
Lever svar
×
Takk for at du forsøkte, men dette er feil svaralternativ.
Tilbakestill oppgaven som uløst
×
Riktig svar!
Siden det er en brøk med en nevner og teller som let kan faktoriseres.
Tilbakestill oppgaven som uløst
×
Takk for at du forsøkte, men dette er feil svaralternativ.
Tilbakestill oppgaven som uløst
Deriver funksjonene
a) ∫12(x2+2x−3)dx
b) ∫x2−x−23xdx
c) h(x)=x3⋅e−x
2ln∣x−2∣
Lever svar
2ln∣x−2∣−ln∣x+1∣+C
Lever svar
ln∣x−2∣−2ln∣x+1∣+C
Lever svar
×
Takk for at du forsøkte, men dette er feil svaralternativ.
Tilbakestill oppgaven som uløst
×
Riktig svar!
Vi bruker delbrøkoppspalting.
Vi kan faktorisere nevneren til (x−2)(x+1) og kan da skrive
∫x2−x−23xdx=∫(x−2A+x+1B)dx ∫x2−x−23xdx=A∫x−21dx+B∫x−11dx
Vi finner koeffisientene A og B
x2−x−24=x−2A+x+1Bx2−x−23x=(x−2)(x+1)A(x+1)+(x+1)(x−2)B(x−2)x2−x−23x=(x−2)(x+1)Ax+A+Bx−2Bx2−x−23x+0=(x−2)(x+1)(A+B)x+(A−2B)A+B=3∧A−2B=0B=3−A∧A=2BB=3−2B∧A=2BB=1∧A=2
Vi stter A og B inn i det opprinnelige integralet og får
∫x2−x−23xdx=A∫x−21dx+B∫x+11dx=2∫x−21dx+1∫x+11dx=2ln∣x−2∣−ln∣x+1∣+C
Tilbakestill oppgaven som uløst
×
Takk for at du forsøkte, men dette er feil svaralternativ.
Tilbakestill oppgaven som uløst
Kjerneregelen for derivasjon sier at ( f(u(x) )\' = f\'(u(x)) \cdot u\'(x). Er det da riktig at ∫f(ˊu(x))⋅u(ˊx)dx=f(u(x)) ?
Nei, det er helt feil
Lever svar
Ja
Lever svar
Nesten, det riktige er ∫f(ˊu(x))⋅u(ˊx)dx=f(u(x))+C
Lever svar
×
Takk for at du forsøkte, men dette er feil svaralternativ.
Tilbakestill oppgaven som uløst
×
Takk for at du forsøkte, men dette er feil svaralternativ.
Tilbakestill oppgaven som uløst
×
Riktig svar!
Siden et konstant ledd i u(x) ville forsvunnet når man deriverte det.
Takk for at du forsøkte, men dette er feil svaralternativ.
Tilbakestill oppgaven som uløst
×
Takk for at du forsøkte, men dette er feil svaralternativ.
Tilbakestill oppgaven som uløst
Finn integralene
a) ∫(cosx+x1)dx
b) ∫x⋅e2xdx
c) ∫x2−2x−22x−2dx
31x3−x2−2xx2−2xC
Lever svar
ln∣x2+2x−3∣+C
Lever svar
x−32x−x+12+C
Lever svar
×
Takk for at du forsøkte, men dette er feil svaralternativ.
Tilbakestill oppgaven som uløst
×
Riktig svar!
Riktig!
Tilbakestill oppgaven som uløst
×
Takk for at du forsøkte, men dette er feil svaralternativ.
Tilbakestill oppgaven som uløst
Hva menes med å bruke delvis integrasjon 2 ganger?
Det betyr at uttrykket vi får bak integrasjonstegnet på høyre side av likhetstegnet er blitt enklere enn det vi startet med, men fortsatt ikke så enkelt at vi kan antiderivere. Men ved å bruke regelen om delvis integrasjon en gang til - på dette nye integralet - får vi et integral vi kan regne ut ved antiderivasjon.
Lever svar
Det gir ingen mening
Lever svar
Da kommer vi tilbake til utgangspunktet
Lever svar
×
Riktig svar!
Tilbakestill oppgaven som uløst
×
Takk for at du forsøkte, men dette er feil svaralternativ.
Tilbakestill oppgaven som uløst
×
Takk for at du forsøkte, men dette er feil svaralternativ.
Tilbakestill oppgaven som uløst
Hvilket ubestemt integral kan vi enklest regne ut ved hjelp av delvis integrasjon?
∫2xdx
Lever svar
∫x2−12dx
Lever svar
∫2xlnxdx
Lever svar
×
Takk for at du forsøkte, men dette er feil svaralternativ.
Tilbakestill oppgaven som uløst
×
Takk for at du forsøkte, men dette er feil svaralternativ.
Tilbakestill oppgaven som uløst
×
Riktig svar!
Fordi da kan man få x i bare én faktor, noe som er lettere å ta integralet av.
Tilbakestill oppgaven som uløst
Regn ut integralene
a) ∫2x⋅sin(x2)dx
b) ∫1ex⋅lnxdx
=4e2−1+C
Lever svar
=4−e2−1
Lever svar
=4e2+1
Lever svar
×
Takk for at du forsøkte, men dette er feil svaralternativ.
Tilbakestill oppgaven som uløst
×
Takk for at du forsøkte, men dette er feil svaralternativ.
Tilbakestill oppgaven som uløst
×
Riktig svar!
∫1ex⋅lnxdx
La u=lnx og \displaystyle v\' = x: ∫1ex⋅lnxdx=[lnx⋅21x2−∫x1⋅21x2]1e =[21x2⋅lnx−21∫xdx]1e =[21x2⋅lnx−21⋅21x2]1e =21[x2⋅lnx−21x2]1e =21((e2⋅lne−21⋅e2)−(12⋅ln1−21⋅12)) =21((e2−21⋅e2)−(0−21)) =21(2e2+21) =21⋅2e2+1 =4e2+1
Tilbakestill oppgaven som uløst
Finn integralene
a) ∫(cosx+x1)dx
b) ∫x⋅e2xdx
c) ∫x2−2x−22x−2dx
21ex2+C
Lever svar
21(x−21)e2x+C
Lever svar
41x2e2x+C
Lever svar
×
Takk for at du forsøkte, men dette er feil svaralternativ.
Tilbakestill oppgaven som uløst
×
Riktig svar!
Riktig!
Tilbakestill oppgaven som uløst
×
Takk for at du forsøkte, men dette er feil svaralternativ.
Tilbakestill oppgaven som uløst
Hvilket ubestemt integral kan vi enklest regne ut ved hjelp av varibelskifte?
∫cosx22xdx
Lever svar
∫2x2−1dx
Lever svar
∫2x⋅lnxdx
Lever svar
×
Riktig svar!
Da bytter man ut x^2 slik at man kan forkorte det mot 2x.
Tilbakestill oppgaven som uløst
×
Takk for at du forsøkte, men dette er feil svaralternativ.
Tilbakestill oppgaven som uløst
×
Takk for at du forsøkte, men dette er feil svaralternativ.
Tilbakestill oppgaven som uløst
Når vi bruker integrasjon med variabelskifte er f\'(u) =
df
Lever svar
df/du
Lever svar
du
Lever svar
×
Takk for at du forsøkte, men dette er feil svaralternativ.
Tilbakestill oppgaven som uløst
×
Riktig svar!
Siden den originale funksjonen gir på en måte y-verdiene til det man putter inn som u. Så denne formelen er bare bruk av deriverte = endring y / endring x.
Tilbakestill oppgaven som uløst
×
Takk for at du forsøkte, men dette er feil svaralternativ.
Tilbakestill oppgaven som uløst
Integralet ∫x+a1dx =
−x+a12
Lever svar
ln(x+a)
Lever svar
ln∣x+a∣
Lever svar
×
Takk for at du forsøkte, men dette er feil svaralternativ.
Tilbakestill oppgaven som uløst
×
Takk for at du forsøkte, men dette er feil svaralternativ.
Tilbakestill oppgaven som uløst
×
Riktig svar!
Det er det det blir.
Tilbakestill oppgaven som uløst
Er det riktig at (x−1)(x+2)2x+1=x−1A+x+2B ?
Ja, hvis A = 2 og B = 1.
Lever svar
Ja hvis A = 1 og B = 1
Lever svar
Nei
Lever svar
×
Takk for at du forsøkte, men dette er feil svaralternativ.
Flott opplegg og undervisning😊
Tusen takk!
Gjorde unna R2 som privatist på et halvt år!! Mattevideo har gjort det mye lettere å fordøye et så tungt pensum på så kort tid. Tusen takk for hjelpa!!😊
Bra undervisning!
Jeg er fornøyd med videone deres det har hjulpet meg til å bestå matten i både Vgs og Uni . Så takk😊
Meget bra!
Tusen takk. Veldig flink lærer. Gode forklaringer.
Helt topp :D
Bra side.
Kjempebra!😊
Bra side. Veldig gode forklaringer😊
Tror dette kommer til å redde meg på noen prøver fremover. Takk! :D
takk for hjelpen
Takk for læreren av denne siden. Det er utrolig en bra side, fikk meg mye. Tusen hjertelig takk
Kan trygt anbefale Arne Hovland! Beste læreren jeg har hatt i løpet av drøyt 20 år med utdanning.
takk for denne siden :D min 1T mattelærer snakker så monotont og gjør matte så kjedelig at interessen svinner vekk og jeg sovner etter 5 minutter.