Gjorde unna R2 som privatist på et halvt år!! Mattevideo har gjort det mye lettere å fordøye et så tungt pensum på så kort tid. Tusen takk for hjelpa!!😊
Vilde Ågotnes
Bra undervisning!
Hamdi A Ahmed
Jeg er fornøyd med videone deres det har hjulpet meg til å bestå matten i både Vgs og Uni . Så takk😊
Min lærer går litt for raskt gjennom r1 pensum, noe som gjør at jeg trenger repetisjon av de vanskeligste emnene...les mer
Min lærer går litt for raskt gjennom r1 pensum, noe som gjør at jeg trenger repetisjon av de vanskeligste emnene.
Mattevideo har hjulpet meg med å Forstå, ved gode forklaringer og muligheten til å pause underveis i videoene. Jeg har også brukt mattevideo til å løse oppgaver. Før hadde jeg problemer med fremgangsmåten ved oppgaveløsning, men nå har jeg lært dette. Hos mattevideo gjennomgår jeg oppgaver fra hvert kapittel, deretter bruker jeg samme fremgangsmåte på oppgavene fra læreverket.
Hvis du er privatist, anbefaler jeg å bruke mattevideo kapittel for kapittel. Først ser du gjennomgangen av teorien, og deretter prøver du deg på oppgavene (løsningen ligger ute). Dersom du har en lærer i faget, er det kanskje ikke nødvendig å se absolutt alle videoene. Da kan du hoppe rett til de emnene du trenger å lære mer om, eller til oppgavene som han gjennomgår. Absolutt å anbefale. Jeg har lært masse, og fått hjelp før prøver.
Jeg kjøpte medlemskap fordi jeg ønsket forklaring via video og tilgang på "lærer" hele døgnet. Mattevideo er...les mer
Jeg kjøpte medlemskap fordi jeg ønsket forklaring via video og tilgang på "lærer" hele døgnet.
Mattevideo er genialt fordi man kan gå tilbake å se eksempler om og om igjen til man skjønner det. Man kan også bla tilbake til "enklere" relevant pensum hvis man trenger det. Jeg har brukt mattevideo i stedet for forelesninger på universitetet, rett og slett fordi jeg kan følge mitt eget tempo og gå igjennom pensum når jeg trenger det.
Jeg anbefaler å bruke mattevideo på følgende måte: Lag en oversikt over hva du trenger å lære for å bestå eksamen. Sett deretter opp oversikt en i en økende vanskelighetsgrad. Bruk eksempler i boka kombinert med eksempler i videoene. Når du har sett en video, så regn deg gjennom oppgavene du har tilgjengelig. Er du i tvil om du har skjønt det, så se videoen på nytt. Når man har kommet gjennom pensum, så kan man bruke videoene til repetisjon. Denne læreren er tilgjengelig hele døgnet, og blir aldri frustrert hvis du ikke skjønner noe de første gangene pensum gjennomgås:-)
Jeg ble abonnement hos mattevideo fordi jeg slet med å forstå pensum i 1T. Jeg ønsket å prøve, for å se...les mer
Jeg ble abonnement hos mattevideo fordi jeg slet med å forstå pensum i 1T. Jeg ønsket å prøve, for å se om dette kunne være en enklere måte å lære matematikk på.
Jeg har brukt mattevideo på flere måter. Jeg så gjennom temaer på mattevideo kvelden før læreren min gikk gjennom det på skolen. Da kunne jeg litt om temaet på forhånd, fikk mer ut av timen, og hang bedre med enn før. Ellers brukte jeg også mattevideo før og under prøver. Jeg så gjennom videoer 3-4 dager før prøven, noterte viktige forklaringer og oppgaver, og brukte notatene slik at jeg kunne gå tilbake på mattevideo og se videoer under selve prøven (når det var lov å ha med hjelpemidler så klart).
Jeg vil anbefale andre elever å bruke mattevideo på samme måte, da dette fungerte bra for meg. Mattevideo er en god side, med en flink og motivert lærer. Om du sliter med faget på skolen, kan mattevideo være til stor hjelp, du kan se videoer så mange ganger du vil, uten å henge etter! Anbefales til alle:)
Jeg ble medlem for å forbedre meg, og gå dypere inn i spesifikke temaer. Jeg går i 10. klasse og tar forsert løp...les mer
Jeg bruker mattevideo når jeg gjør lekser, for å repetere regnemetoder, eller gjennomgår vanskelige temaer jeg sliter litt med. R2 er et vanskelig fag, med det hjelper meg å repetere temaer og regnemetoder i mitt eget tempo, siden jeg kan se videoene flere ganger og sette læreren på pause når jeg vil.
Mattevideo er en tjeneste som er bra hvis du står litt fast i pensum. Du kan se videoene i alle mattefagene fra 1P til R2. Man kan gå igjennom pensum i sitt eget tempo, og se videoene så mange ganger man vil helt til man skjønner det. I tillegg er det ikke så dyrt, så det er verdt å prøve en måned.
Jeg ble medlem for å forbedre meg, og gå dypere inn i spesifikke temaer. Jeg går i 10. klasse og tar forsert løp...les mer
Jeg ble medlem for å forbedre meg, og gå dypere inn i spesifikke temaer. Jeg går i 10. klasse og tar forsert løp i mattematikk. To ganger i uka tar jeg turen til en videregående skole for ekstra undervisning, men jeg føler at timene der ikke holder, da mine krav til karakterer er på lik linje med de som faktisk går 1. vgs. Derfor måtte jeg ha et tilleggsverktøy, og dermed fant jeg mattevideo.
Jeg har brukt mattevideo hovedsaklig til to ting;
1. Introduksjon til nye temaer. Jeg har brukt mattevideo til å ta en titt på nye temaer før timen, slik at når læreren faktisk går gjennom temaene blir læringen mye enklere. Etter timen bruker jeg også mattevideo til å drille meg selv flere ganger på det vi gjennomgikk. På denne måten ligger jeg et skritt foran de andre.
2. Ta igjen tapt undervisning. Hvis du er borte fra timen på grunn av f. eks sykdom, kan du få den samme tavleundervisningen på mattevideo som de andre hadde i timen. Jeg spør bare klassekameratene mine om hva de gikk gjennom i timen, og finner det på mattevideo. Dette er definitivt det smarteste valget jeg har gjort når det gjelder matte, start med det nå istedenfor å sløve rundt når du heller kan forbedre deg i det morsomste faget på skolen!
Jeg brukte mattevideo da jeg måtte ta opp igjen eksamen, selvlært. Min gamle lærer gjorde det veldig vanskelig å henge med...les mer
Jeg brukte mattevideo da jeg måtte ta opp igjen eksamen, selvlært. Min gamle lærer gjorde det veldig vanskelig å henge med. Han var nok flink i matte, men hadde vanskeligheter med å undervise oss som måtte ha det inn med teskje.
Jeg brukte læreboka kombinert med mattevideo. Først fant jeg temaene jeg slet mest med i boken og prøvde å løse de enkleste oppgavene. Om jeg slet, lette jeg dem opp på mattevideo. Der så jeg videoer med eksempeloppgaver, gjerne den samme videoen om og om igjen. Da videoene var sett, prøvde jeg å løse liknende oppgaver fra boken. Jeg gikk aldri videre til vanskeligere oppgaver før det grunnleggende satt. Dette gjentok jeg noen ganger i uka, og det virket fantastisk for meg.
TIPS: du kommer ikke langt om du ikke har god greie på det grunnleggende, så gå aldri videre på vanskeligere oppgaver før du har full Forståelse for grunnkunnskapen. For meg, og for mange andre, går mattematikk fort i glemmeboken. Derfor gjenntok jeg denne prossessen et par ganger i uka, slik at det til slutt satt som et skudd.
Det beste var at jeg på eksamen faktisk forstod en del oppgaver som jeg ikke hadde løst før, fordi grunnleggende kunnskap var på plass og jeg kunne bruke logisk tankegang på nye temaer. Mange sier at matte er logisk, man må bare knekke koden. Jeg er langt i fra noen ekspert, men for første gang i mitt liv som elev følte jeg at jeg klarte dette litt på egenhånd, og det er takket være enkle, tydelige og strukturerte videoer på mattevideo.no. Jeg bestod til slutt matteeksamen med glans, uten en eneste lærer fysisk i nærheten. Lykke til alle i samme sko! Matte kan faktisk trenes.
Eksamenstid 5 timer
Del 1 (Uten hjelpemidler) skal leveres etter 2 timer.
Del 2 (Med hjelpemidler) skal leveres etter senest 5 timer.
Oppgåve 1 (4 poeng)
Deriver funksjonane
a) f(x)=3cosx
b) g(x)=6sin(π∗x)+7
c) h(x)=3e(2x)∗sin(3x)
Oppgåve 2 (4 poeng)
Bestem integralet ∫x2−42xdx ved å bruke
a) variabelskifte
b) delbrøkoppspalting
Oppgåve 3 (4 poeng)
Punkta A (1,-1,0), B(3,1,1), og C(0,0,0) er gitt.
a) Bestem AB×AC. Bruk resultatet til å bestemme arealet av ΔABC
b) Bestem AB∗AC. Bruk mellom anna dette resultatet til å bestemme arealet av ΔABC
Oppgåve 4 (3 poeng)
Løys differensiallikninga
y' = 6xy når y(0) = 2
Oppgåve 5 (5 poeng)
Ei rekkje er gitt ved
Sn=1+3+5+7+…+an
a) Bestem a16 og S16
b) Forklar at rekkja er aritmetisk, og bruk dette til å finne eit uttrykk for an og Sn.
c) Bestem kor mange ledd rekkja minst må ha for at Sn>400
Oppgåve 6 (2 poeng)
Denne informasjonen er gitt om ein kontinuerleg funksjon f :
• f(x)>0 for alle x∈R
• f(x)>0 for alle x∈<←,−2>∪<2,→>
• f′(x)=0 for x = -2 og for x = 2
• f′(x)=0 for x = 1 og for x = 3
Lag ei skisse som viser korleis grafen til f kan sjå ut.
Oppgåve 7 (2 poeng)
Bruk induksjon til å bevise påstanden
P(n):a+ak+ak2+ak3+…+akn−1=a∗k−1kn−1,n∈N
Oppgåve 1 (4 poeng)
Ein pasient får 8 mL av ein medisin kvar time. Den totale mengda medisin i kroppen t timar etter at medisineringa starta, er y(t) mL. I løpet av ein time skil kroppen ut 5 % av den totale medisinmengda.
a) Forklar at
y′=8−0,05∗y
b) Vis at y(t)=160−160e−0,05t når y (0) = 0
c) Bestem limt→∞y(t). Kommenter svaret.
Oppgåve 2 (6 poeng)
Funksjonen f er gitt ved
f(x)=12e−0,5x∗sin(0,5x),x∈[0,4π]
a) Teikn grafen til f .
b) Bestem eventuelle topp- og botnpunkt på grafen til f.
c) Bestem arealet som er avgrensa av grafen til f og x-aksen.
Oppgåve 3 (8 poeng)
Skissa nedanfor viser ein pyramide OABCD som er plassert i eit romkoordinatsystem.
Hjørna i pyramiden er O(0,0,0) , A(3,0,0) , B(3,3,0) , C(0,3,0) og D(0,0,4)
a) Bestem ved rekning arealet av sideflata ABD i pyramiden.
b) Sideflata ABD ligg i eit plan ?.
Vis ved rekning at planet ? har likninga
4x + 3z - 12 = 0
c) Bestem avstanden frå punktet O til planet ?.
d) Bestem ved rekning vinkelen mellom dei to plana som sideflatene ABD og BCD ligg i.
Oppgåve 4 (6 poeng)
Figuren nedanfor viser ein sirkelsektor OBC der C ligg i første kvadrant. Bogen BC er ein del av sirkelen med likning x2+y2=9. Punktet A har koordinatane (2,0) og ∠OAC=90∘
a) Vis at koordinatane til C er 2,5.
Bestem likninga for den rette linja gjennom O og C.
b) Når flatestykket F1 blir dreidd 360° om x-aksen, får vi ei kjegle.
Bestem volumet av denne kjegla ved hjelp av integralrekning.
c) Når flatestykket F1 blir dreidd 360° om x-aksen, får vi eit kulesegment.
Bestem volumet av dette kulesegmentet ved hjelp av integralrekning.
Oppgåve 5 (6 poeng)
På figuren er eit rektangel med sider x og y skrive inn i ein sirkel. Sirkelen har diameteren D. ?v er vinkelen mellom x og D.
a) Forklar at omkretsen O til rektangelet kan skrivast som
O(v) = 2Dcosv + 2Dsinv
Bestem eit funksjonsuttrykk for arealet A(v) av rektangelet.
b) Bruk O'(v) og vis at det rektangelet som har størst omkrets, er eit kvadrat.
Bestem den største omkretsen av rektangelet uttrykt ved diameteren D.
c) Bruk A'(v) og vis at det rektangelet som har størst areal, også er eit kvadrat.
Bestem det største arealet av rektangelet uttrykt ved diameteren D.
Oppgåve 6 (6 poeng)
Sierpi?ski-trekanten, som har fått namnet sitt etter den polske matematikaren Wac?aw Franciszek Sierpi?ski (1882–1969), lagar vi slik:
1. Vi startar med ein likesida, svart trekant har areal A. Sjå figur 1.
2. Midtpunktet på kvar av sidene i trekanten er hjørna i ein ny kvit, likesida trekant. Denne kvite trekanten fjernar vi. Vi står da igjen med tre likesida, svarte trekantar. Sjå figur 2.
3. Vi gjentek denne prosessen med kvar av dei svarte trekantane. Sjå figurane 3–5. Vi tenkjer oss at prosessen blir utført uendeleg mange gonger. Den «gjennomhola» figuren vi da står igjen med, blir kalla Sierpi?ski-trekanten.
Summen av areala som blir fjerna (dei kvite trekantane), er gitt ved rekkja
A∗(41+163+649+25627+…)
a) Bestem summen av rekkja ovanfor.
Kva fortel svaret ditt om arealet av Sierpi?ski-trekanten?
b) Sidene i trekanten i figur 1 er lik a.
Forklar at omkretsane av dei svarte trekantane i figurane 25? ovanfor er høvesvis
3∗23∗a,3∗49∗a,3∗827∗aog 3∗1681∗a
c) Vi gjer prosessen som forklart i trinn 2 ovanfor n gonger. Forklar at omkretsen av dei svarte trekantane da er lik 3∗(23)n∗a
Forklar at 3∗(23)n∗a→∞ når n→∞
Kva fortel det om omkretsen til Sierpi?ski-trekanten?
Det finnes mange ulike studieteknikker, utfordringen er ofte å finne de som fungerer best for deg. I oversikten under finner du enkelt de beste teknikkene.
Alle våre studietips er laget av vår superelev - med 6 i snitt fra vgs. Ingen av artiklene tar mer enn 5 minutter å lese - slik at du kan starte læringen så fort som mulig.
Hva skjer i hjernen når du lærer?
Du møter noe nytt for første gang
Du kobler den nye tingen med kunnskap du har fra før
Vi løser en trigonometrisk likning med vinklene i radianer GRAFISK.
×
×
00:00
Vi skal nå se hvordan vi kan løse en trigonometrisk ligning grafisk.
+
Quiz section 0
Hva vil det si å løse en ligning grafisk?
↻
Å legge til tall uten videre
Lever svar
Å gjette resultatet
Lever svar
Å tegne funksjoner og finne skjæringspunkt
Lever svar
Oppsummer det viktigste på 1-2-3, klikk her for 10 sekunders quiz
Oppsummer det viktigste på 1-2-3
00:05
Og her har vi da vinkel i radianer.
+
Quiz section 1
Hva er en radian?
↻
En type brøk
Lever svar
En tilfeldig desimalverdi
Lever svar
En måleenhet for vinkler
Lever svar
00:10
Og siden x går mellom null og to pi, så betyr jo det at x-aksen er gitt.
+
Quiz section 2
Hvor mange radianer er en hel sirkel?
↻
2π
Lever svar
π
Lever svar
3π
Lever svar
00:18
Jeg tror egentlig vi bare smeller den oppe.
+
Quiz section 3
Hvor plotter man en funksjon grafisk?
↻
I et koordinatsystem
Lever svar
I et regneark
Lever svar
På en tallinje
Lever svar
00:22
Så da har vi null der, og så har vi to pi der.
+
Quiz section 4
Hvilke to radianpunkter markerer ofte start og slutt på én hel svingning?
↻
−π og π
Lever svar
0 og π
Lever svar
0 og 2π
Lever svar
00:27
Og så er det jo en sinusfunksjon da.
+
Quiz section 5
Hvilken trigonometrisk funksjon varierer mellom −1 og 1?
↻
Sinus
Lever svar
Tangens
Lever svar
Eksponential
Lever svar
00:31
Og sinusfunksjoner har jo en bestemt.
+
Quiz section 6
Har sinus en periodisk kurve?
↻
Bare under spesielle forhold
Lever svar
Nei, den er rett
Lever svar
Ja, den gjentar seg
Lever svar
00:37
Nei, et bestemt utseende for å se på den måten. Det er jo sånn at.
+
Quiz section 7
Er sinuskurven gjenkjennelig?
↻
Bare hvis man zoomer inn
Lever svar
Nei, den er tilfeldig
Lever svar
Ja, den har et jevnt bølgemønster
Lever svar
00:42
Sinusverdier de ligger jo alltid mellom en og minus en fordi det kan knyttes til enhetssirkelen. Det er jo ikke forbudt å bruke kalkulator der heller for all del.
+
Quiz section 8
Mellom hvilke to tall ligger sinusverdier?
↻
0 og 2
Lever svar
−1 og 1
Lever svar
−2 og 2
Lever svar
00:54
Eller enda bedre kanskje å bruke GeoGebra eller [..]. Nå bare viser vi bare hvordan ting blir.
+
Quiz section 9
Hvilket verktøy kan man bruke for å tegne funksjoner digitalt?
↻
Ordbok
Lever svar
Tekstbehandler
Lever svar
GeoGebra
Lever svar
01:05
Uten.
+
Quiz section 10
Kan man løse trigonometriske ligninger uten digitale hjelpemidler?
↻
Nei, aldri
Lever svar
Ja, ofte
Lever svar
Bare med superdatamaskiner
Lever svar
01:07
For at man kan egentlig komme veldig langt bare med å se på faktisk denne oppgaven helt uten hjelpemidler.
+
Quiz section 11
Er det mulig å komme langt i trigonomi uten hjelpemidler?
↻
Bare for enkle oppgaver
Lever svar
Nei
Lever svar
Ja
Lever svar
01:17
Fordi sinus det er jo.
+
Quiz section 12
Hva er sinus i en enhetssirkel?
↻
Den andre koordinaten
Lever svar
Den første koordinaten
Lever svar
Lengden av radius
Lever svar
01:23
Andre koordinaten til det punktet som vi alltid har hvis vi har en vinkel x. Så er førstekoordinaten cos x og så [..] den siden.
+
Quiz section 13
Hvilken koordinat gir cos i en enhetssirkel?
↻
Førstekoordinaten
Lever svar
Andrekoordinaten
Lever svar
Ingen av dem
Lever svar
01:35
Til det punktet der borte, så sinus starter på null. Og så når vi kommer opp til nitti grader, som er det samme som pi halve.
+
Quiz section 14
Hvor starter sinusverdien ved vinkel 0?
↻
0
Lever svar
1
Lever svar
−1
Lever svar
01:44
Så er vi oppe på igjen. Og så når vi har kommet til etthundreogåtti, det er det samme som pi. Da har vi nede igjen på null, for da er vi her borte. Og så når jeg kommer til tohundreogsytti, som er en og en halv pi.
+
Quiz section 15
Hvilken sinusverdi har π (180°)?
↻
−1
Lever svar
1
Lever svar
0
Lever svar
01:55
Da har vi der, så den grafen går liksom litt sånn som en sånn sinusfunksjon gjerne gjør det.
+
Quiz section 16
Får man en bølgete graf av sinus?
↻
Ja
Lever svar
Nei
Lever svar
Bare over 90°
Lever svar
02:05
Så får vi nok får vi noe sånt. Skal vi se.
+
Quiz section 17
Kan en skisse av sinus tegnes for hånd?
↻
Kun med datamaskin
Lever svar
Nei, umulig
Lever svar
Ja, omtrent
Lever svar
02:10
Sånn.
+
Quiz section 18
Går en sinuskurve over og under x-aksen?
↻
Ja, den krysser x-aksen flere ganger
Lever svar
Den ligger kun under
Lever svar
Nei, den holder seg kun over
Lever svar
02:13
Og så der, den er en halv.
+
Quiz section 19
Hva er en typisk sinusverdi man ofte ser?
↻
1/2
Lever svar
5
Lever svar
−2
Lever svar
02:16
Det er det vi blir spurt om nå.
+
Quiz section 20
Kan man finne vinkler der sinusverdi er 1/2?
↻
Ja
Lever svar
Nei
Lever svar
Bare ved 0
Lever svar
02:19
Da er det jo bare å tenke seg skjæringspunktet. Så hvis du på kalkisen hadde tegnet dette her, så spør du bare kalkulatoren om å finne skjæringspunktet mellom y = null og funksjonen y er lik sin x. Og da må vi altså ... ja enten så må du gjøre dette [..] radianer. Så kan du gjøre det tipset som jeg nevnte tidligere, med at du kan faktisk være i grader og så bare gjør dem selv, men ja. Det er jo naturlig å være i radianer egentlig her.
+
Quiz section 21
Hva finner man grafisk når man løser sin x = 0?
↻
Arealet under kurven
Lever svar
Der cos x = 1
Lever svar
Skjæringspunkter med x-aksen
Lever svar
02:48
Men det punktet der, det er det samme som tretti grader. Det vet ...
+
Quiz section 22
Hvilken vinkel tilsvarer 30° i radianer?
↻
π/6
Lever svar
π/3
Lever svar
π/4
Lever svar
02:54
Det vet vi. Sinus til tretti grader er jo like en halv, så det der er jo pi-sjettedeler, eller det er den informasjonen du går glipp av hvis du bare spør kalkisen, for da gir den det som null komma en eller annet. Og da er det punktet der borte pi minus [..], og det er [..].
+
Quiz section 23
Hva er sin(30°)?
↻
1
Lever svar
0
Lever svar
1/2
Lever svar
03:13
Så der har vi løsningene grafisk.
+
Quiz section 24
Hva kalles løsningene i en trigonometrisk ligning når de vises i koordinatsystemet?
↻
Skjæringspunkter
Lever svar
Maksimumpunkter
Lever svar
Konstanter
Lever svar
03:15
Løsning.
+
Quiz section 25
Kan en trigonometrisk ligning ha flere løsninger?
↻
Ja, men kun i negative vinkler
Lever svar
Nei, alltid bare én
Lever svar
Ja, ofte flere
Lever svar
03:21
x = pi-sjettedeler eller x = fem pi over seks.
+
Quiz section 26
Er π/6 og 5π/6 eksempler på to ulike løsninger for sin x = 1/2?
Flott opplegg og undervisning😊
Tusen takk!
Gjorde unna R2 som privatist på et halvt år!! Mattevideo har gjort det mye lettere å fordøye et så tungt pensum på så kort tid. Tusen takk for hjelpa!!😊
Bra undervisning!
Jeg er fornøyd med videone deres det har hjulpet meg til å bestå matten i både Vgs og Uni . Så takk😊
Meget bra!
Tusen takk. Veldig flink lærer. Gode forklaringer.
Helt topp :D
Bra side.
Kjempebra!😊
Bra side. Veldig gode forklaringer😊
Tror dette kommer til å redde meg på noen prøver fremover. Takk! :D
takk for hjelpen
Takk for læreren av denne siden. Det er utrolig en bra side, fikk meg mye. Tusen hjertelig takk
Kan trygt anbefale Arne Hovland! Beste læreren jeg har hatt i løpet av drøyt 20 år med utdanning.
takk for denne siden :D min 1T mattelærer snakker så monotont og gjør matte så kjedelig at interessen svinner vekk og jeg sovner etter 5 minutter.