×
VGS matematikk
1 - 2 - 3 klasse

Lær VGS matten fra A til Å
med de beste metodene

Enkelt å
holde fokus

Forstå det
vanskelige

Få god
oversikt

Øv på
riktig tema

Få hjelp når
du stopper opp

Anne-Lise Frivold Svendsen

Flott opplegg og undervisning😊

Karina Tellmann Marthinussen

Tusen takk!

Ruben Flatås

Gjorde unna R2 som privatist på et halvt år!! Mattevideo har gjort det mye lettere å fordøye et så tungt pensum på så kort tid. Tusen takk for hjelpa!!😊

Vilde Ågotnes

Bra undervisning!

Hamdi A Ahmed

Jeg er fornøyd med videone deres det har hjulpet meg til å bestå matten i både Vgs og Uni . Så takk😊

Halvard Balto

Meget bra!

Halil Ibrahim Keser

Tusen takk. Veldig flink lærer. Gode forklaringer.

Marte Forsberg

Helt topp :D

Jon Mills

Bra side.

Kirsti Beate Årsandøy

Kjempebra!😊

Mari Bertelsen

Bra side. Veldig gode forklaringer😊

Selma Voss

Tror dette kommer til å redde meg på noen prøver fremover. Takk! :D

Caja Magnussen

takk for hjelpen

Abdi Omar

Takk for læreren av denne siden. Det er utrolig en bra side, fikk meg mye. Tusen hjertelig takk

Olav Lunde Arneberg

Kan trygt anbefale Arne Hovland! Beste læreren jeg har hatt i løpet av drøyt 20 år med utdanning.

Daniel Gabrielsen

takk for denne siden :D min 1T mattelærer snakker så monotont og gjør matte så kjedelig at interessen svinner vekk og jeg sovner etter 5 minutter.

Kassi 17 år - har eksamen i R1 til våren.
Min lærer går litt for raskt gjennom r1 pensum, noe som gjør at jeg trenger repetisjon av de vanskeligste emnene...les mer
Liam 34 år - har eksamen i R2 til jul.
Jeg kjøpte medlemskap fordi jeg ønsket forklaring via video og tilgang på "lærer" hele døgnet. Mattevideo er...les mer
Oda 16 år - har eksamen i 1T til våren.
Jeg ble abonnement hos mattevideo fordi jeg slet med å forstå pensum i 1T. Jeg ønsket å prøve, for å se...les mer
Nicolai 21 år - har eksamen i R2 til sommeren.
Jeg ble medlem for å forbedre meg, og gå dypere inn i spesifikke temaer. Jeg går i 10. klasse og tar forsert løp...les mer
Daniel 15 år - har eksamen i 1t til våren.
Jeg ble medlem for å forbedre meg, og gå dypere inn i spesifikke temaer. Jeg går i 10. klasse og tar forsert løp...les mer
June 20 år - preppet til eksamen.
Jeg brukte mattevideo da jeg måtte ta opp igjen eksamen, selvlært. Min gamle lærer gjorde det veldig vanskelig å henge med...les mer
Velg ditt fag
R2 er et studieretningsfag på Vg3-nivå. R2 står for "Realfaglig matematikk 2" og bygger videre på R1.
Hele læreplan fra A til Å
Videoundervsining alle temaer
Korte og effektive selvtester
Vi gjennomgår eksamen
Organiser temaene etter ønsket lærebok
Kapittelinndeling: Sinus R2
×
Organiser innholdet etter din lærebok
Organiser videoer med ønskede ikoner
Organiser selvtester med ønskede ikoner
Følger og rekker
, curr: r2, book: 2149
07:59
21:40
10:59
28:08
36:09
43:52
20:59
28:33
08:58
28:45
49:28
Integralregning
, curr: r2, book: 2149
07:38
08:24
01:11
07:52
07:29
30:41
10:26
04:27
34:04
28:47
13:11
20:05
Integrasjonsmetoder
, curr: r2, book: 2149
07:17
15:05
09:24
21:10
08:40
16:57
09:55
23:29
27:42
07:34
07:31
Vektorer
, curr: r2, book: 2149
02:35
03:31
07:57
03:14
41:39
15:07
17:35
34:30
14:04
12:49
59:28
30:16
37:45
11:48
27:40
16:06
Trigonometri
, curr: r2, book: 2149
19:21
08:45
21:24
03:26
13:21
09:44
03:30
11:22
03:06
15:54
19:22
17:23
24:33
Funksjoner og kurver
, curr: r2, book: 2149
13:18
05:28
39:37
13:44
07:04
14:29
07:10
04:15
41:30
67:40
06:33
Eksamenstid 5 timer Del 1 (Uten hjelpemidler) skal leveres etter 2 timer. Del 2 (Med hjelpemidler) skal leveres etter senest 5 timer.
R2_eksm_3

Oppgåve 1 (4 poeng)

  Deriver funksjonane  
a) f(x)=3cosxf(x) = 3cosx  
b) g(x)=6sin(πx)+7g(x) = 6sin(\pi*x) + 7  
c) h(x)=3e(2x)sin(3x)h(x) = 3e^{(2x)}*sin(3x)

Oppgåve 2 (4 poeng)

  Bestem integralet 2xx24dx\int \frac{2x}{x^2 - 4} dx ved å bruke  
a) variabelskifte  
b) delbrøkoppspalting

Oppgåve 3 (4 poeng)

  Punkta A (1,-1,0), B(3,1,1), og C(0,0,0) er gitt.  
a) Bestem AB×AC\overrightarrow{AB}\times\overrightarrow{AC}. Bruk resultatet til å bestemme arealet av ΔABC\Delta ABC  
b) Bestem ABAC\overrightarrow{AB}*\overrightarrow{AC}. Bruk mellom anna dette resultatet til å bestemme arealet av ΔABC\Delta ABC

Oppgåve 4 (3 poeng)

 
Løys differensiallikninga y' = 6xy når y(0) = 2  

Oppgåve 5 (5 poeng)

  Ei rekkje er gitt ved Sn=1+3+5+7++anS_n = 1 + 3 + 5 + 7 +\ldots+ a_n    
a) Bestem a16a_{16} og S16S_{16}  
b) Forklar at rekkja er aritmetisk, og bruk dette til å finne eit uttrykk for ana_n og SnS_n.  
c) Bestem kor mange ledd rekkja minst må ha for at Sn>400{S_{n}} > {400}

Oppgåve 6 (2 poeng)

  Denne informasjonen er gitt om ein kontinuerleg funksjon f : • f(x)>0f(x) > 0 for alle xRx \in \mathbb{R}f(x)>0f(x) > 0 for alle x<,2><2,>x \in <\leftarrow , -2>\cup <2, \rightarrow >f(x)=0f'(x) = 0 for x = -2 og for x = 2 • f(x)=0f'(x) = 0 for x = 1 og for x = 3  
Lag ei skisse som viser korleis grafen til f kan sjå ut.

Oppgåve 7 (2 poeng)

   
Bruk induksjon til å bevise påstanden P(n):a+ak+ak2+ak3++akn1=akn1k1,nNP(n): a + ak + ak^2 + ak^3 +\ldots+ak^{n-1} = a*{\frac{k^n-1}{k-1}} , n\in \mathbb{N}
R2_eksm_4

Oppgåve 1 (4 poeng)

  Ein pasient får 8 mL av ein medisin kvar time. Den totale mengda medisin i kroppen t timar etter at medisineringa starta, er y(t) mL. I løpet av ein time skil kroppen ut 5 % av den totale medisinmengda.  
a) Forklar at y=80,05yy' = 8 - 0,05*y  
b) Vis at y(t)=160160e0,05ty(t) = 160 - 160e^{-0,05t} når y (0) = 0  
c) Bestem limty(t)\lim_{t\rightarrow \infty} y(t). Kommenter svaret.

Oppgåve 2 (6 poeng)

  Funksjonen f er gitt ved f(x)=12e0,5xsin(0,5x),x[0,4π]f(x) = 12e^{-0,5x}*sin(0,5x) , x \in[0, 4\pi]  
a) Teikn grafen til f . b) Bestem eventuelle topp- og botnpunkt på grafen til f. c) Bestem arealet som er avgrensa av grafen til f og x-aksen.

Oppgåve 3 (8 poeng)

  Skissa nedanfor viser ein pyramide OABCD som er plassert i eit romkoordinatsystem. Hjørna i pyramiden er O(0,0,0) , A(3,0,0) , B(3,3,0) , C(0,3,0) og D(0,0,4) R2_eksm_5  
a) Bestem ved rekning arealet av sideflata ABD i pyramiden.  
b) Sideflata ABD ligg i eit plan ?. Vis ved rekning at planet ? har likninga 4x + 3z - 12 = 0  
c) Bestem avstanden frå punktet O til planet ?.  
d) Bestem ved rekning vinkelen mellom dei to plana som sideflatene ABD og BCD ligg i.

Oppgåve 4 (6 poeng)

  Figuren nedanfor viser ein sirkelsektor OBC der C ligg i første kvadrant. Bogen BC er ein del av sirkelen med likning x2+y2=9x^2 + y^2 = 9. Punktet A har koordinatane (2,0) og OAC=90\angle OAC = 90^{\circ} R2_eksm_6  
a) Vis at koordinatane til C er 2,52,\sqrt{5}. Bestem likninga for den rette linja gjennom O og C.  
b) Når flatestykket F1F_1 blir dreidd 360° om x-aksen, får vi ei kjegle. Bestem volumet av denne kjegla ved hjelp av integralrekning.  
c) Når flatestykket F1F_1 blir dreidd 360° om x-aksen, får vi eit kulesegment. Bestem volumet av dette kulesegmentet ved hjelp av integralrekning.

Oppgåve 5 (6 poeng)

  På figuren er eit rektangel med sider x og y skrive inn i ein sirkel. Sirkelen har diameteren D. ?v er vinkelen mellom x og D. R2_eksm_7  
a) Forklar at omkretsen O til rektangelet kan skrivast som O(v) = 2Dcosv + 2Dsinv Bestem eit funksjonsuttrykk for arealet A(v) av rektangelet.  
b) Bruk O'(v) og vis at det rektangelet som har størst omkrets, er eit kvadrat. Bestem den største omkretsen av rektangelet uttrykt ved diameteren D.  
c) Bruk A'(v) og vis at det rektangelet som har størst areal, også er eit kvadrat. Bestem det største arealet av rektangelet uttrykt ved diameteren D.

Oppgåve 6 (6 poeng)

  Sierpi?ski-trekanten, som har fått namnet sitt etter den polske matematikaren Wac?aw Franciszek Sierpi?ski (1882–1969), lagar vi slik:  
1. Vi startar med ein likesida, svart trekant har areal A. Sjå figur 1. 2. Midtpunktet på kvar av sidene i trekanten er hjørna i ein ny kvit, likesida trekant. Denne kvite trekanten fjernar vi. Vi står da igjen med tre likesida, svarte trekantar. Sjå figur 2. 3. Vi gjentek denne prosessen med kvar av dei svarte trekantane. Sjå figurane 3–5. Vi tenkjer oss at prosessen blir utført uendeleg mange gonger. Den «gjennomhola» figuren vi da står igjen med, blir kalla Sierpi?ski-trekanten. Summen av areala som blir fjerna (dei kvite trekantane), er gitt ved rekkja A(14+316+964+27256+)A*({\frac{1}{4}}+{\frac{3}{16}}+{\frac{9}{64}}+{\frac{27}{256}}+\ldots)  
a) Bestem summen av rekkja ovanfor. Kva fortel svaret ditt om arealet av Sierpi?ski-trekanten?  
b) Sidene i trekanten i figur 1 er lik a. Forklar at omkretsane av dei svarte trekantane i figurane 25? ovanfor er høvesvis 332a,394a,3278a3*{\frac{3}{2}}*a, 3*{\frac{9}{4}}*a, 3*{\frac{27}{8}}*aog 38116a3*{\frac{81}{16}}*a  
c) Vi gjer prosessen som forklart i trinn 2 ovanfor n gonger. Forklar at omkretsen av dei svarte trekantane da er lik 3(32)na3*(\frac{3}{2})^n*a Forklar at 3(32)na3*(\frac{3}{2})^n*a \rightarrow \infty når nn \rightarrow \infty Kva fortel det om omkretsen til Sierpi?ski-trekanten?
Gratis Prøvesmak
Superteknikker
En til en veiledning
R2
 - Kapittelinndeling: Sinus R2 (oppdatert læreplan)
 - Integrasjonsmetoder
 - Trapesmetoden
×
07:03
Teori 1
Denne videoen bygger videre på forrige teorivideo. Vi regner Riemann-summer (venstresummer) til funksjonen f(x)=x2+4f(x) = x^2+4 med n rektangler der n er [10, 100, 1000, 10000, 100000, 1000000]. r2-2022_02_02_teori2_23149_2090-2219
×
04:28
Teori 2
Trapesmetoden - en mer nøyaktig tilnærming for arealet under en graf.
03:34
Teori 3
Tilnærmingsverdier for bestemte integraler: Trapesmetoden gir oss gjennomsnittet av det vi får med rektangelmetoden, med venstretilnærming og høyretilnærming - Hvorfor det?
Skjul video ▼
Vis video ▲
Selvtester og oppgaver for mengdetrening
10 sekunders quiz
Eksamensoppgaver
×
Hva omtales som mer nøyaktig enn rektangelmetoden?
Ingen forskjell
Lever svar
Trapesmetoden
Lever svar
Sirkelfunksjon
Lever svar
00:00
Hvilken form nevnes med en kjent arealformel?
Trapes
Lever svar
Kvadrat
Lever svar
Sirkel
Lever svar
00:06
Hva illustreres med grafen?
En sekant
Lever svar
Et areal
Lever svar
En volum
Lever svar
00:16
Hva er plassert under grafen?
Trapeser
Lever svar
Rektangler
Lever svar
Trekanter
Lever svar
00:24
Hvorfor er det vanskelig å skille linjen fra grafen?
Fordi de er tett på hverandre
Lever svar
Fordi fargene mangler
Lever svar
Fordi de aldri møtes
Lever svar
00:31
Hva kalles (B – A) / n?
Delta X
Lever svar
Pi
Lever svar
E
Lever svar
00:48
Hva er fokus her?
Ett bestemt trapes
Lever svar
En hel sirkel
Lever svar
Hele grafen
Lever svar
01:06
Hvor mange parallelle sider har et trapes?
To
Lever svar
Tre
Lever svar
Fire
Lever svar
01:12
Hva er en enkel formel for arealet av et trapes?
(A + B) / 2 * høyden
Lever svar
(A – B) / 2 * høyden
Lever svar
A * B
Lever svar
01:42
Hva gjør vi med trapesene for å finne totalarealet?
Vi summerer dem
Lever svar
Vi trekker dem fra hverandre
Lever svar
Vi deler dem på to
Lever svar
01:57
Hvilke punkter opptrer kun én gang i summen?
De første og siste
Lever svar
Alle midtpunkter
Lever svar
Ingen
Lever svar
02:43
Hva tilsvarer f(x₀) her?
f(A)
Lever svar
f(B)
Lever svar
Ingen spesifikk verdi
Lever svar
03:26
Hva stilles det spørsmål ved?
Poenget med metoden
Lever svar
Fargen på grafen
Lever svar
Lengden på x-aksen
Lever svar
03:35
Hva påvirkes av valget av summemetode?
Regneeffektiviteten
Lever svar
Fargen på plottet
Lever svar
Funksjonens verdi
Lever svar
03:41
Hva sammenliknes i videoen?
Trapesmetoden og rektangelmetoden
Lever svar
Addisjon og subtraksjon
Lever svar
Integraler og derivasjon
Lever svar
00:00
Hva ble påvist tidligere?
At venstretilnærming er best
Lever svar
At metodene gir samme verdi
Lever svar
At trapes alltid gir null
Lever svar
00:18
Hvilket spørsmål stilles?
Hvordan finne integralet nøyaktig?
Lever svar
Hvorfor metodene gir samme svar?
Lever svar
Hvordan finne delta x?
Lever svar
00:22
Hva viser videoen først?
Et rektangel på en funksjon
Lever svar
En sirkel
Lever svar
Et integral uten graf
Lever svar
00:27
Hvordan bestemmes rektangelhøyden ved venstretilnærming?
Funksjonsverdien til venstre
Lever svar
Funksjonsverdien til høyre
Lever svar
Gjennomsnittet av begge sider
Lever svar
00:42
Hvordan regnes arealet ved venstretilnærming?
Lengde minus bredde
Lever svar
Høyde ganger bredde
Lever svar
Høyde delt på bredde
Lever svar
01:03
Hva endres ved høyretilnærming?
Funksjonsverdi på høyre side
Lever svar
Delta x blir negativ
Lever svar
Integralets grenser endres
Lever svar
01:14
Formel for høyretilnærming?
f(x_i-1) ganger delta x
Lever svar
f(x_i) ganger delta x
Lever svar
Delta x delt på f(x_i)
Lever svar
01:36
Hva viser trapesmetoden?
Trapes mellom punktene
Lever svar
Et kvadrat
Lever svar
Bare venstre rektangler
Lever svar
01:41
Hvordan regnes trapesareal?
Snitt av sidene ganger høyde
Lever svar
Lengde ganger bredde
Lever svar
Delta x delt på f(x)
Lever svar
01:55
Hva beregnes med gjennomsnittet?
Kun trapesmetoden
Lever svar
Venstre- og høyretilnærming
Lever svar
Integralet eksakt
Lever svar
02:26
Hva skjer med delta x?
Settes utenfor parentes
Lever svar
Blir negativ
Lever svar
Forsvinner fra uttrykket
Lever svar
03:05
Hva er hensikten med metodene?
Summere mange arealer
Lever svar
Finne en enkelt verdi uten summasjon
Lever svar
Fjerne delta x
Lever svar
03:22