×
VGS matematikk
1 - 2 - 3 klasse

Lær VGS matten fra A til Å
med de beste metodene

Enkelt å
holde fokus

Forstå det
vanskelige

Få god
oversikt

Øv på
riktig tema

Få hjelp når
du stopper opp

Anne-Lise Frivold Svendsen

Flott opplegg og undervisning😊

Karina Tellmann Marthinussen

Tusen takk!

Ruben Flatås

Gjorde unna R2 som privatist på et halvt år!! Mattevideo har gjort det mye lettere å fordøye et så tungt pensum på så kort tid. Tusen takk for hjelpa!!😊

Vilde Ågotnes

Bra undervisning!

Hamdi A Ahmed

Jeg er fornøyd med videone deres det har hjulpet meg til å bestå matten i både Vgs og Uni . Så takk😊

Halvard Balto

Meget bra!

Halil Ibrahim Keser

Tusen takk. Veldig flink lærer. Gode forklaringer.

Marte Forsberg

Helt topp :D

Jon Mills

Bra side.

Kirsti Beate Årsandøy

Kjempebra!😊

Mari Bertelsen

Bra side. Veldig gode forklaringer😊

Selma Voss

Tror dette kommer til å redde meg på noen prøver fremover. Takk! :D

Caja Magnussen

takk for hjelpen

Abdi Omar

Takk for læreren av denne siden. Det er utrolig en bra side, fikk meg mye. Tusen hjertelig takk

Olav Lunde Arneberg

Kan trygt anbefale Arne Hovland! Beste læreren jeg har hatt i løpet av drøyt 20 år med utdanning.

Daniel Gabrielsen

takk for denne siden :D min 1T mattelærer snakker så monotont og gjør matte så kjedelig at interessen svinner vekk og jeg sovner etter 5 minutter.

Kassi 17 år - har eksamen i R1 til våren.
Min lærer går litt for raskt gjennom r1 pensum, noe som gjør at jeg trenger repetisjon av de vanskeligste emnene...les mer
Liam 34 år - har eksamen i R2 til jul.
Jeg kjøpte medlemskap fordi jeg ønsket forklaring via video og tilgang på "lærer" hele døgnet. Mattevideo er...les mer
Oda 16 år - har eksamen i 1T til våren.
Jeg ble abonnement hos mattevideo fordi jeg slet med å forstå pensum i 1T. Jeg ønsket å prøve, for å se...les mer
Nicolai 21 år - har eksamen i R2 til sommeren.
Jeg ble medlem for å forbedre meg, og gå dypere inn i spesifikke temaer. Jeg går i 10. klasse og tar forsert løp...les mer
Daniel 15 år - har eksamen i 1t til våren.
Jeg ble medlem for å forbedre meg, og gå dypere inn i spesifikke temaer. Jeg går i 10. klasse og tar forsert løp...les mer
June 20 år - preppet til eksamen.
Jeg brukte mattevideo da jeg måtte ta opp igjen eksamen, selvlært. Min gamle lærer gjorde det veldig vanskelig å henge med...les mer
Velg ditt fag
1P er et studieretningsfag på Vg1-nivå. 1P står for "Praktisk matematikk".
Hele læreplan fra A til Å
Videoundervsining alle temaer
Korte og effektive selvtester
Vi gjennomgår eksamen
Organiser temaene etter ønsket lærebok
Kapittelinndeling: Sinus 1P
×
Organiser innholdet etter din lærebok
Organiser videoer med ønskede ikoner
Organiser selvtester med ønskede ikoner
Tall og tallregning
, curr: 1p, book: 818
09:45
04:36
09:27
04:24
02:48
02:55
06:03
06:37
08:11
09:56
02:21
03:53
Prosentregning
, curr: 1p, book: 818
02:14
02:56
07:32
02:39
04:29
02:02
28:04
16:18
02:19
04:16
Proporsjonalitet, potenser og røtter
, curr: 1p, book: 818
06:38
03:08
05:46
12:38
05:12
02:07
05:51
16:25
06:08
03:55
16:29
Likninger og formler
, curr: 1p, book: 818
01:53
15:00
13:49
05:02
05:49
15:24
17:59
05:05
08:32
04:38
02:47
Funksjoner og grafer
, curr: 1p, book: 818
14:38
05:46
03:03
10:54
16:21
22:16
11:39
04:40
02:24
09:14
03:56
05:59
17:49
07:29
09:41
Matematiske modeller
, curr: 1p, book: 818
13:14
05:50
Flere temaer
, curr: 1p, book: 818
95:35
55:20
 
DEL 1 Uten hjelpemidler

Oppgave 1 (3 poeng)

  Nedenfor ser du hvor stor oppslutning Kristelig Folkeparti hadde ved stortingsvalgene i 2013 og 2017.

a) Hvor mange prosentpoeng gikk oppslutningen til Kristelig Folkeparti tilbake med fra 2013 til 2017?
b) Hvor mange prosent gikk oppslutningen til Kristelig Folkeparti tilbake med fra 2013 til 2017?    

Oppgave 2 (2 poeng)

  I en oppskrift står det at du trenger 4 dL melk og 500 g hvetemel for å lage 12 boller. Tenk deg at du har 1 L melk og 1,5 kg hvetemel.
Hvor mange boller kan du lage dersom du følger oppskriften?    

Oppgave 3 (2 poeng)

  I 2013 var indeksen for en vare 80. Varen kostet da 1000 kroner. I 2017 var indeksen for den samme varen 120.
Hvor mye kostet varen i 2017 dersom prisen har fulgt indeksen?    
   

Oppgave 4 (2 poeng)

  På et kart er avstanden mellom to byer 9 cm. I virkeligheten er avstanden 45 km.
Bestem målestokken til kartet.    

Oppgave 5 (4 poeng)

  Mads skal ta førerkortet for bil. Ved trafikkskolen koster det 13 000 kroner for den obligatoriske delen av føreropplæringen inkludert gebyrer. I tillegg koster det 600 kroner for hver kjøretime.
a) Bestem en funksjon K som viser prisen K(x) kroner for å ta førerkortet dersom Mads bruker x kjøretimer.
b) Tegn grafen til K i et koordinatsystem.
c) Avgjør om prisen for å ta førerkortet og antall kjøretimer er proporsjonale størrelser.    

Oppgave 6 (2 poeng)

  En fire år gammel moped koster i dag 8000 kroner. Mopedens verdi har avtatt med 12 % per år siden den var ny.
Forklar hvilket av uttrykkene nedenfor som kan brukes til å finne hvor mye mopeden kostet da den var ny.
  • 800080000,1248000 - 8000 \cdot 0,12^4
  • 80000,8848000 \cdot 0,88^4
  • 80000,884\frac{8000}{0,88^4}
  • 80000,1248000 \cdot 0,12^{-4}
 
   

Oppgave 7 (3 poeng)

Tenk deg at du kaster en rød og en blå terning.
Avgjør hvilket av de to alternativene nedenfor som er mest sannsynlig.
  • Terningene viser samme antall øyne.
  • Summen av antall øyne er 5 eller mindre.

Oppgave 8 (2 poeng)

  Åpningen i toppen av en brusflaske har form som en sirkel med diameter 22 mm.
Avgjør om et kronestykke med omkrets 66 mm kan puttes ned i flasken.    
   

Oppgave 9 (4 poeng)

Ovenfor ser du en lampeskjerm av stoff med fire like sider. Skissen til høyre viser én side av lampeskjermen.
a) Bestem arealet av én side av lampeskjermen.
b) Hvor mye stoff går det med til en lampeskjerm når det må beregnes 10 % ekstra stoff til overlapp og kanter?  
   
DEL 2 Med hjelpemidler
 

Oppgave 1 (6 poeng)

Funksjonen T er gitt ved T(x)=0,018x3+0,55x23,5x+13T(x)=-0,018x^3+0,55x^2-3,5x+13 , 0x200 \leq x \leq 20 Funksjonen viser temperaturen T(x) grader celsius (°C) et sted i Norge x timer etter midnatt en sommerdag.
a) Bruk Graftegner til å tegne grafen til T
b) På hvilke tidspunkt (klokkeslett) var temperaturen 10°C
c) Bestem forskjellen mellom høyeste og laveste temperatur i perioden fra midnatt og fram til klokka 20.  
   

Oppgave 2 (4 poeng)

  Silje har en timelønn på 210 kroner. Hun betaler 2 % av bruttolønnen i pensjonsavgift og har et skattetrekk på 32 %. En måned arbeidet hun 162,5 timer.
a) Hvor mye fikk Silje utbetalt denne måneden? I 2017 fikk Silje utbetalt 47 736 kroner i feriepenger. Dette tilsvarer 12,0 % av feriepengegrunnlaget for 2017.
b) Bestem feriepengegrunnlaget til Silje for 2017.  

Oppgave 3 (4 poeng)

  Ved en videregående skole er det 640 elever. I en undersøkelse ble elevene spurt om når de legger seg kvelden før en skoledag.
  • 14\frac{1}{4} av elevene svarte at de legger seg før klokka 23.
Det viser seg at
  • 45\frac{4}{5} av elevene som legger seg før klokka 23, har et karaktersnitt over fire.
  • 13\frac{1}{3} av elevene som legger seg etter klokka 23, har et karaktersnitt over fire.
a) Lag en krysstabell som illustrerer opplysningene som er gitt ovenfor. Tenk deg at vi trekker ut en elev ved skolen tilfeldig.
b) Bestem sannsynligheten for at eleven har et karaktersnitt over fire. Tenk deg at den eleven vi trakk i oppgave b), har et karaktersnitt over fire.
c) Bestem sannsynligheten for at denne eleven legger seg før klokka 23 kvelden før en skoledag.  
   

Oppgave 4 (6 poeng)

Et område har form som vist på figuren ovenfor. Punktet F ligger på AC, punktet G ligger på CD, og B er skjæringspunktet mellom AE og CD. AB = 80 m, BE = AF = 20 m og DE = 32 m.
a) Forklar at △ABC, △BDE og △FGC er formlike.
b) Bestem AC, og hvis at FG = 67,5 m. Kristian skal dekke området ABGF med et 15 cm tykt lag med sand.
c) Hvor mange kubikkmeter send vil han trenge?  
   

Oppgave 5 (5 poeng)

Et firma bruker i perioder skoleungdommer for å få unna diverse malerjobber. Ungdommene får timelønn etter alder. I tillegg til timelønn må firmaet betale feriepenger og arbeidsgiveravgift. Firmaet har beregnet at disse utgiftene utgjør 25 % av timelønnen.
Du skal lage et regneark som vist nedenfor. I de hvite cellene skal firmaet registrere opplysninger. I de blå cellene skal du sette inn formler.
  • Timelønn og hvor stor prosentandel av lønnen som firmaet må beregne til feriepenger og arbeidsgiveravgift, skal registreres i celle B3, B4 og B5.
  • Når alderen registreres, skal regnearket automatisk gi riktig timelønn.
  • Totale kostnader for hver ungdom er summen av lønnen til ungdommen og utgiftene til feriepenger og arbeidsgiveravgift.

 
   

Oppgave 6 (6 poeng)

Olav har fått sommerjobb. Han skal plukke moreller. Morellene skal legges i kurver. Salgsprisen for en kurv moreller inkludert 15 % merverdiavgift er 69 kroner. Olav kan velge mellom tre ulike alternativer når det gjelder lønn. Alternativ 1: en fast timelønn på 135 kroner Alternativ 2: en fast timelønn på 80 kroner og i tillegg 3 kroner for hver kurv med moreller han plukker Alternativ 3: 12 % av salgsprisen uten merverdiavgift for hver kurv med moreller han plukker  
a) For hvilket eller hvilke av de tre alternativene ovenfor er lønnen proporsjonal med mengden moreller Olav plukker? Begrunn svaret ditt.
b) Hvor mange kurver med moreller må Olav plukke i løpet av en time for at alternativ 2 skal gi en høyere lønn enn alternativ 1?
c) Hvor mange kurver med moreller må Olav plukke i løpet av en dag for å tjene 1000 kroner dersom han velger alternativ 3?  

Oppgave 7 (5 poeng)

En pizzarestaurant tilbyr pizzaer i tre ulike størrelser.
  • Den minste pizzaen har en diameter på 20 cm, den mellomstore har en diameter på 30 cm, og den største har en diameter på 40 cm.
  • Alle pizzaene er 1,25 cm tykke.
Vi antar at når vi spiser pizza, er hver bit vi tar i munnen, 5 cm3. Nedenfor ser du prislisten for noen utvalgte pizzatyper.

a)Vis at volumet av den minste pizzaen er 393 cm3.
b)Lag et regneark som vist nedenfor. I de hvite cellene skal du registrere opplysninger. I de gule cellene skal du sette inn formler.

Gratis Prøvesmak
Superteknikker
En til en veiledning
1P
 - Kapittelinndeling: Sinus 1P (oppdatert læreplan)
 - Funksjoner og grafer
 - Å finne likningen for ei linje
×
04:07
Oppgave 2
En plante er 10 cm høy. De neste dagene vokser planten 3,0 mm per døgn. La h(x) være høyden i cm etter x døgn.
   a) Skriv funksjonsuttrykket for h(x).
   b) Finn definisjonsmengden og verdimengden for h.
×
03:03
Teori 1
Fortsett med å finne likningen for linja i eksempelet over. 1p-2020_04_02_teori3_17587_646_859
02:58
Oppgave 1
Prisen på en drosjetur er gitt ved funksjonen   P(x)=25x+50P(x)=25 x+50 - hvor x er kjørte km.
   a) Tolk tallene 25 og 50.
   b) Hva var prisen for en tur på 4,3 km?
   c) Hvor langt kommer du for 300 kr?
03:49
Oppgave 3
En rett linje går gjennom punktet (1,2) og har stigningstall lik -2. Finn likningen for linja ved å    a) tegne   b) regne
Skjul video ▼
Vis video ▲
Selvtester og oppgaver for mengdetrening
10 sekunders quiz
Eksamensoppgaver
×
Hva kalles tallet som beskriver hvor bratt en linje er?
Stigningstall
Lever svar
Konstantledd
Lever svar
Punktverdi
Lever svar
00:00
Hva forteller stigningstallet oss?
Linjens helning
Lever svar
Linjens farge
Lever svar
Antall punkter på linjen
Lever svar
00:18
Hva beskriver en linjeligning?
Forholdet mellom x og y
Lever svar
Linjens lengde
Lever svar
Linjens tykkelse
Lever svar
00:22
Hva kalles leddet som viser linjens skjæring med y-aksen?
Konstantledd
Lever svar
Stigningstall
Lever svar
Variabelledd
Lever svar
00:27
Hva er y = a x + b?
En linjeligning
Lever svar
En sirkeldefinisjon
Lever svar
En brøk
Lever svar
00:53
Hva kalles "a" i y = a x + b?
Stigningstall
Lever svar
Konstantledd
Lever svar
Punktnavn
Lever svar
00:57
Hva viser stigningstallet?
Linjens helning
Lever svar
Linjens farge
Lever svar
Linjens navn
Lever svar
01:02
Hva trenger man i tillegg til a for å bestemme en linje?
b (konstantleddet)
Lever svar
Antall koordinatsystem
Lever svar
Linjens farge
Lever svar
01:06
Hva gir et punkt oss informasjon om?
Hvor linjen passerer
Lever svar
Linjens bredde
Lever svar
Linjens farge
Lever svar
01:09
Hvor mange punkter trengs for å entydig definere en linje?
To
Lever svar
Ett
Lever svar
Ingen
Lever svar
01:12
Hva betyr det at en linje går gjennom et punkt?
Punktet ligger på linjen
Lever svar
Punktet er irrelevant
Lever svar
Punktet definerer en sirkel
Lever svar
01:16
Er ett punkt nok hvis du allerede kjenner stigningstallet?
Ja
Lever svar
Nei
Lever svar
Bare hvis punktet er på y-aksen
Lever svar
01:18
Hva kalles tallene som beskriver et punkts plassering?
Koordinater
Lever svar
Parametere
Lever svar
Indekser
Lever svar
01:26
Hvilken variabel er uavhengig i y = a x + b?
x
Lever svar
y
Lever svar
b
Lever svar
01:35
Hva skjer med y når x endrer seg?
Y endres i henhold til stigningstallet
Lever svar
Y forblir uendret
Lever svar
Y blir negativ
Lever svar
01:39
Hva gjør vi når vi setter inn en kjent x-verdi i ligningen?
Finner tilhørende y-verdi
Lever svar
Endrer a
Lever svar
Sletter konstantleddet
Lever svar
01:44
Hva kan kjent x og y brukes til?
Å finne b
Lever svar
Å endre aksene
Lever svar
Å ignorere ligningen
Lever svar
01:48
Når a er kjent og vi har et punkt, hva kan vi beregne?
Konstantleddet b
Lever svar
Linjens tykkelse
Lever svar
Antall løsninger
Lever svar
01:50
Hva forteller b i y = a x + b?
Hvor linjen krysser y-aksen
Lever svar
Linjens stigning
Lever svar
Linjens lengde
Lever svar
01:52
Hva får man når a, x og y er kjent?
En ligning for å finne b
Lever svar
Ingen informasjon
Lever svar
Et tilfeldig tall
Lever svar
01:56
Hva er en ligning?
En likhet mellom to uttrykk
Lever svar
Et bilde av en linje
Lever svar
En tilfeldig bokstav
Lever svar
01:59
Hva kalles en verdi vi ikke kjenner i en ligning?
En ukjent
Lever svar
En konstant
Lever svar
Et definert tall
Lever svar
02:03
Hva må man gjøre for å finne b når den er ukjent?
Løse ligningen
Lever svar
Tegne grafen på nytt
Lever svar
Endre enhetene
Lever svar
02:07
Hva betyr det å "flytte" et tall i en ligning?
Justere begge sider likt
Lever svar
Endre tallet til et annet
Lever svar
Ignorere tallet
Lever svar
02:17
Hva innebærer det å ha funnet b?
Å vite hvor linjen krysser y-aksen
Lever svar
Å miste stigningstallet
Lever svar
Å definere en sirkel
Lever svar
02:30
Når a og b er kjent, hva kan man skrive?
Den fullstendige linjeligningen
Lever svar
En ny enhet
Lever svar
En usammenhengende formel
Lever svar
02:33
Hva beskriver y = a x + b generelt?
En rett linje
Lever svar
En sirkel
Lever svar
En kube
Lever svar
02:36
Hva trenger vi i tillegg til a x for å få en fullstendig linje?
b
Lever svar
y
Lever svar
x
Lever svar
02:41
Hvilket ledd angir hvor linjen starter på y-aksen?
b
Lever svar
a
Lever svar
x
Lever svar
02:49
Hva kalles punktet der linjen krysser y-aksen?
Skjæringspunktet
Lever svar
Endepunktet
Lever svar
Midtpunktet
Lever svar
02:53
Hvilken verdi angir y-skjæringen?
b
Lever svar
a
Lever svar
x
Lever svar
02:57
Hva er verdien til b utifra denne formelen: 1 = 1/2(2) + b
0
Lever svar
0,5
Lever svar
1
Lever svar
×
Tilbakestill oppgaven som uløst
×
Tilbakestill oppgaven som uløst
×
Tilbakestill oppgaven som uløst