×
VGS matematikk
1 - 2 - 3 klasse

Lær VGS matten fra A til Å
med de beste metodene

Enkelt å
holde fokus

Forstå det
vanskelige

Få god
oversikt

Øv på
riktig tema

Få hjelp når
du stopper opp

Anne-Lise Frivold Svendsen

Flott opplegg og undervisning😊

Karina Tellmann Marthinussen

Tusen takk!

Ruben Flatås

Gjorde unna R2 som privatist på et halvt år!! Mattevideo har gjort det mye lettere å fordøye et så tungt pensum på så kort tid. Tusen takk for hjelpa!!😊

Vilde Ågotnes

Bra undervisning!

Hamdi A Ahmed

Jeg er fornøyd med videone deres det har hjulpet meg til å bestå matten i både Vgs og Uni . Så takk😊

Halvard Balto

Meget bra!

Halil Ibrahim Keser

Tusen takk. Veldig flink lærer. Gode forklaringer.

Marte Forsberg

Helt topp :D

Jon Mills

Bra side.

Kirsti Beate Årsandøy

Kjempebra!😊

Mari Bertelsen

Bra side. Veldig gode forklaringer😊

Selma Voss

Tror dette kommer til å redde meg på noen prøver fremover. Takk! :D

Caja Magnussen

takk for hjelpen

Abdi Omar

Takk for læreren av denne siden. Det er utrolig en bra side, fikk meg mye. Tusen hjertelig takk

Olav Lunde Arneberg

Kan trygt anbefale Arne Hovland! Beste læreren jeg har hatt i løpet av drøyt 20 år med utdanning.

Daniel Gabrielsen

takk for denne siden :D min 1T mattelærer snakker så monotont og gjør matte så kjedelig at interessen svinner vekk og jeg sovner etter 5 minutter.

Kassi 17 år - har eksamen i R1 til våren.
Min lærer går litt for raskt gjennom r1 pensum, noe som gjør at jeg trenger repetisjon av de vanskeligste emnene...les mer
Liam 34 år - har eksamen i R2 til jul.
Jeg kjøpte medlemskap fordi jeg ønsket forklaring via video og tilgang på "lærer" hele døgnet. Mattevideo er...les mer
Oda 16 år - har eksamen i 1T til våren.
Jeg ble abonnement hos mattevideo fordi jeg slet med å forstå pensum i 1T. Jeg ønsket å prøve, for å se...les mer
Nicolai 21 år - har eksamen i R2 til sommeren.
Jeg ble medlem for å forbedre meg, og gå dypere inn i spesifikke temaer. Jeg går i 10. klasse og tar forsert løp...les mer
Daniel 15 år - har eksamen i 1t til våren.
Jeg ble medlem for å forbedre meg, og gå dypere inn i spesifikke temaer. Jeg går i 10. klasse og tar forsert løp...les mer
June 20 år - preppet til eksamen.
Jeg brukte mattevideo da jeg måtte ta opp igjen eksamen, selvlært. Min gamle lærer gjorde det veldig vanskelig å henge med...les mer
Velg ditt fag
1P er et studieretningsfag på Vg1-nivå. 1P står for "Praktisk matematikk".
Hele læreplan fra A til Å
Videoundervsining alle temaer
Korte og effektive selvtester
Vi gjennomgår eksamen
Organiser temaene etter ønsket lærebok
Kapittelinndeling: Mattevideo.no 1P
×
Organiser innholdet etter din lærebok
Organiser videoer med ønskede ikoner
Organiser selvtester med ønskede ikoner
Tall og algebra
, curr: 1p, book: 662
13:38
04:08
14:14
17:07
04:36
07:00
06:08
10:46
09:31
05:48
10:38
19:29
08:10
04:38
05:02
04:53
12:22
05:53
Økonomi
, curr: 1p, book: 662
10:05
06:21
05:46
10:03
07:17
07:32
09:36
05:52
04:22
08:49
05:29
03:02
12:38
30:35
Geometri
, curr: 1p, book: 662
09:22
23:59
12:04
10:45
07:57
21:01
09:51
Geometri i 3D
, curr: 1p, book: 662
17:03
38:52
18:27
07:39
16:26
Sannsynlighet
, curr: 1p, book: 662
06:24
13:40
02:07
15:13
11:15
04:57
11:36
09:06
12:21
12:21
16:05
Funksjoner
, curr: 1p, book: 662
04:40
02:24
16:06
30:30
28:35
13:29
13:10
12:24
15:46
13:12
05:59
05:15
07:46
 
DEL 1 Uten hjelpemidler

Oppgave 1 (3 poeng)

  Nedenfor ser du hvor stor oppslutning Kristelig Folkeparti hadde ved stortingsvalgene i 2013 og 2017.

a) Hvor mange prosentpoeng gikk oppslutningen til Kristelig Folkeparti tilbake med fra 2013 til 2017?
b) Hvor mange prosent gikk oppslutningen til Kristelig Folkeparti tilbake med fra 2013 til 2017?    

Oppgave 2 (2 poeng)

  I en oppskrift står det at du trenger 4 dL melk og 500 g hvetemel for å lage 12 boller. Tenk deg at du har 1 L melk og 1,5 kg hvetemel.
Hvor mange boller kan du lage dersom du følger oppskriften?    

Oppgave 3 (2 poeng)

  I 2013 var indeksen for en vare 80. Varen kostet da 1000 kroner. I 2017 var indeksen for den samme varen 120.
Hvor mye kostet varen i 2017 dersom prisen har fulgt indeksen?    
   

Oppgave 4 (2 poeng)

  På et kart er avstanden mellom to byer 9 cm. I virkeligheten er avstanden 45 km.
Bestem målestokken til kartet.    

Oppgave 5 (4 poeng)

  Mads skal ta førerkortet for bil. Ved trafikkskolen koster det 13 000 kroner for den obligatoriske delen av føreropplæringen inkludert gebyrer. I tillegg koster det 600 kroner for hver kjøretime.
a) Bestem en funksjon K som viser prisen K(x) kroner for å ta førerkortet dersom Mads bruker x kjøretimer.
b) Tegn grafen til K i et koordinatsystem.
c) Avgjør om prisen for å ta førerkortet og antall kjøretimer er proporsjonale størrelser.    

Oppgave 6 (2 poeng)

  En fire år gammel moped koster i dag 8000 kroner. Mopedens verdi har avtatt med 12 % per år siden den var ny.
Forklar hvilket av uttrykkene nedenfor som kan brukes til å finne hvor mye mopeden kostet da den var ny.
  • 800080000,1248000 - 8000 \cdot 0,12^4
  • 80000,8848000 \cdot 0,88^4
  • 80000,884\frac{8000}{0,88^4}
  • 80000,1248000 \cdot 0,12^{-4}
 
   

Oppgave 7 (3 poeng)

Tenk deg at du kaster en rød og en blå terning.
Avgjør hvilket av de to alternativene nedenfor som er mest sannsynlig.
  • Terningene viser samme antall øyne.
  • Summen av antall øyne er 5 eller mindre.

Oppgave 8 (2 poeng)

  Åpningen i toppen av en brusflaske har form som en sirkel med diameter 22 mm.
Avgjør om et kronestykke med omkrets 66 mm kan puttes ned i flasken.    
   

Oppgave 9 (4 poeng)

Ovenfor ser du en lampeskjerm av stoff med fire like sider. Skissen til høyre viser én side av lampeskjermen.
a) Bestem arealet av én side av lampeskjermen.
b) Hvor mye stoff går det med til en lampeskjerm når det må beregnes 10 % ekstra stoff til overlapp og kanter?  
   
DEL 2 Med hjelpemidler
 

Oppgave 1 (6 poeng)

Funksjonen T er gitt ved T(x)=0,018x3+0,55x23,5x+13T(x)=-0,018x^3+0,55x^2-3,5x+13 , 0x200 \leq x \leq 20 Funksjonen viser temperaturen T(x) grader celsius (°C) et sted i Norge x timer etter midnatt en sommerdag.
a) Bruk Graftegner til å tegne grafen til T
b) På hvilke tidspunkt (klokkeslett) var temperaturen 10°C
c) Bestem forskjellen mellom høyeste og laveste temperatur i perioden fra midnatt og fram til klokka 20.  
   

Oppgave 2 (4 poeng)

  Silje har en timelønn på 210 kroner. Hun betaler 2 % av bruttolønnen i pensjonsavgift og har et skattetrekk på 32 %. En måned arbeidet hun 162,5 timer.
a) Hvor mye fikk Silje utbetalt denne måneden? I 2017 fikk Silje utbetalt 47 736 kroner i feriepenger. Dette tilsvarer 12,0 % av feriepengegrunnlaget for 2017.
b) Bestem feriepengegrunnlaget til Silje for 2017.  

Oppgave 3 (4 poeng)

  Ved en videregående skole er det 640 elever. I en undersøkelse ble elevene spurt om når de legger seg kvelden før en skoledag.
  • 14\frac{1}{4} av elevene svarte at de legger seg før klokka 23.
Det viser seg at
  • 45\frac{4}{5} av elevene som legger seg før klokka 23, har et karaktersnitt over fire.
  • 13\frac{1}{3} av elevene som legger seg etter klokka 23, har et karaktersnitt over fire.
a) Lag en krysstabell som illustrerer opplysningene som er gitt ovenfor. Tenk deg at vi trekker ut en elev ved skolen tilfeldig.
b) Bestem sannsynligheten for at eleven har et karaktersnitt over fire. Tenk deg at den eleven vi trakk i oppgave b), har et karaktersnitt over fire.
c) Bestem sannsynligheten for at denne eleven legger seg før klokka 23 kvelden før en skoledag.  
   

Oppgave 4 (6 poeng)

Et område har form som vist på figuren ovenfor. Punktet F ligger på AC, punktet G ligger på CD, og B er skjæringspunktet mellom AE og CD. AB = 80 m, BE = AF = 20 m og DE = 32 m.
a) Forklar at △ABC, △BDE og △FGC er formlike.
b) Bestem AC, og hvis at FG = 67,5 m. Kristian skal dekke området ABGF med et 15 cm tykt lag med sand.
c) Hvor mange kubikkmeter send vil han trenge?  
   

Oppgave 5 (5 poeng)

Et firma bruker i perioder skoleungdommer for å få unna diverse malerjobber. Ungdommene får timelønn etter alder. I tillegg til timelønn må firmaet betale feriepenger og arbeidsgiveravgift. Firmaet har beregnet at disse utgiftene utgjør 25 % av timelønnen.
Du skal lage et regneark som vist nedenfor. I de hvite cellene skal firmaet registrere opplysninger. I de blå cellene skal du sette inn formler.
  • Timelønn og hvor stor prosentandel av lønnen som firmaet må beregne til feriepenger og arbeidsgiveravgift, skal registreres i celle B3, B4 og B5.
  • Når alderen registreres, skal regnearket automatisk gi riktig timelønn.
  • Totale kostnader for hver ungdom er summen av lønnen til ungdommen og utgiftene til feriepenger og arbeidsgiveravgift.

 
   

Oppgave 6 (6 poeng)

Olav har fått sommerjobb. Han skal plukke moreller. Morellene skal legges i kurver. Salgsprisen for en kurv moreller inkludert 15 % merverdiavgift er 69 kroner. Olav kan velge mellom tre ulike alternativer når det gjelder lønn. Alternativ 1: en fast timelønn på 135 kroner Alternativ 2: en fast timelønn på 80 kroner og i tillegg 3 kroner for hver kurv med moreller han plukker Alternativ 3: 12 % av salgsprisen uten merverdiavgift for hver kurv med moreller han plukker  
a) For hvilket eller hvilke av de tre alternativene ovenfor er lønnen proporsjonal med mengden moreller Olav plukker? Begrunn svaret ditt.
b) Hvor mange kurver med moreller må Olav plukke i løpet av en time for at alternativ 2 skal gi en høyere lønn enn alternativ 1?
c) Hvor mange kurver med moreller må Olav plukke i løpet av en dag for å tjene 1000 kroner dersom han velger alternativ 3?  

Oppgave 7 (5 poeng)

En pizzarestaurant tilbyr pizzaer i tre ulike størrelser.
  • Den minste pizzaen har en diameter på 20 cm, den mellomstore har en diameter på 30 cm, og den største har en diameter på 40 cm.
  • Alle pizzaene er 1,25 cm tykke.
Vi antar at når vi spiser pizza, er hver bit vi tar i munnen, 5 cm3. Nedenfor ser du prislisten for noen utvalgte pizzatyper.

a)Vis at volumet av den minste pizzaen er 393 cm3.
b)Lag et regneark som vist nedenfor. I de hvite cellene skal du registrere opplysninger. I de gule cellene skal du sette inn formler.

Gratis Prøvesmak
Superteknikker
En til en veiledning
1P
 - Kapittelinndeling: Mattevideo.no 1P (gammel læreplan)
 - Tall og algebra
 - Tallregning
×
04:58
Teori 2
Fortegnsreglene for ganging deling og potenser.
×
04:16
Teori 1
Vi ser på fortegnsregler ved addisjon og subtraksjon. Tallinja er et fint verktøy her.

1t_185
04:24
Teori 3
Regnerekkefølge.
01:16
Oppgave 1
Regn ut:    (9:34)21(9 : 3 - 4)^2 -1
02:52
Oppgave 2
Regn ut:    62(34)2+3(233)6-2(3-4)^2+3(2^3-3)
Skjul video ▼
Vis video ▲
Selvtester og oppgaver for mengdetrening
10 sekunders quiz
Eksamensoppgaver
×
Hva skal vi se på i denne videoen?
Fortegnsregler ved addisjon og subtraksjon
Lever svar
Multiplikasjon og divisjon
Lever svar
Brøkregning
Lever svar
00:00
Hva er hensikten med den lille vrien i videoen?
Gjøre det enklere å holde orden på fortegn
Lever svar
Lære nye matematikkregler
Lever svar
Få fortegnregler til å bli vanskeligere
Lever svar
00:05
Hvilket verktøy brukes for å forstå addisjon av tall?
Tallinjen
Lever svar
Kalkulator
Lever svar
Multiplikasjonstabellen
Lever svar
00:23
Hva skjer når vi plusser på et positivt tall på tallinjen?
Vi går til høyre
Lever svar
Vi går til venstre
Lever svar
Vi står stille
Lever svar
00:33
Hva gjør vi når vi legger til et negativt tall?
Går til venstre på tallinjen
Lever svar
Går til høyre på tallinjen
Lever svar
Hopper over tallet
Lever svar
00:53
Hva demonstreres med de fire regnestykkene?
Hvordan fortegn påvirker resultatet
Lever svar
Multiplikasjonstabellen
Lever svar
Bruk av kalkulator
Lever svar
01:18
Hva er resultatet av 3 + 4?
7
Lever svar
-1
Lever svar
1
Lever svar
01:27
Trenger vi alltid tallinjen for enkle regnestykker?
Nei
Lever svar
Ja
Lever svar
Bare noen ganger
Lever svar
01:33
Hva skjer når vi regner 3 + (-4)?
Vi går fire skritt til venstre fra 3
Lever svar
Vi går fire skritt til høyre fra 3
Lever svar
Vi står på tallet 3
Lever svar
01:36
Hvor kommer vi når vi regner -3 + 4?
Til tallet 1
Lever svar
Til tallet -7
Lever svar
Til tallet -1
Lever svar
01:55
Hva er resultatet av -3 + (-4)?
-7
Lever svar
1
Lever svar
-1
Lever svar
02:10
Hva er poenget med å bruke tallinjen?
Visualisere regnestykket
Lever svar
Alltid tegne den
Lever svar
Unngå å gjøre feil
Lever svar
02:20
Hvordan kan vi definere subtraksjon?
Legge til det motsatte tallet
Lever svar
Trekke fra samme tall
Lever svar
Multiplisere med to
Lever svar
02:32
Hva er 3 minus 4 lik ifølge definisjonen?
3 pluss (-4)
Lever svar
7
Lever svar
-1
Lever svar
02:54
Hva skjer når vi har minus minus i et regnestykke?
Det blir pluss
Lever svar
Det blir minus
Lever svar
Det blir null
Lever svar
03:18
Hva er resultatet av -3 - 4?
-7
Lever svar
1
Lever svar
-1
Lever svar
03:43
Hva blir -3 - (-4) omgjort til?
-3 + 4
Lever svar
-3 + (-4)
Lever svar
-7
Lever svar
03:57
Hvilke operasjoner gjelder fortegnsreglene for?
Ganging, deling og potenser
Lever svar
Addisjon og subtraksjon
Lever svar
Kvadratrøtter
Lever svar
00:00
Hva avgjør fortegnet ved ganging?
Antall negative faktorer
Lever svar
Størrelsen på tallene
Lever svar
Antall positive faktorer
Lever svar
00:05
Hva blir fortegnet når vi ganger to positive tall?
Positivt
Lever svar
Negativt
Lever svar
Null
Lever svar
00:13
Hvordan ganger vi med negative tall?
Ganger som vanlig
Lever svar
Endrer regnereglene
Lever svar
Bruker addisjon i stedet
Lever svar
00:25
Hva blir produktet av 5 og 3 uten hensyn til fortegn?
15
Lever svar
8
Lever svar
2
Lever svar
00:37
Hva blir fortegnet når vi har én negativ faktor?
Negativt
Lever svar
Positivt
Lever svar
Null
Lever svar
00:43
Hva skjer med fortegnet for hver negativ faktor?
Det skifter
Lever svar
Det forblir positivt
Lever svar
Det blir null
Lever svar
00:51
Hva blir fortegnet når vi har to negative faktorer?
Positivt
Lever svar
Negativt
Lever svar
Null
Lever svar
00:58
Hva skjer med fortegnet når antall negative faktorer er oddetall?
Resultatet blir negativt
Lever svar
Resultatet blir positivt
Lever svar
Resultatet blir null
Lever svar
01:03
Hva blir resultatet når vi ganger to negative tall?
Positivt tall
Lever svar
Negativt tall
Lever svar
Null
Lever svar
01:09
Hvor mange fortegnsskifter skjer med to negative faktorer?
To
Lever svar
Ett
Lever svar
Ingen
Lever svar
01:12
Hva blir fortegnet når antall negative faktorer er partall?
Positivt
Lever svar
Negativt
Lever svar
Null
Lever svar
01:28
Hva skjer når vi opphøyer et negativt tall i 1?
Vi får samme negative tall
Lever svar
Det blir positivt
Lever svar
Det blir null
Lever svar
01:33
Hva blir fortegnet når et negativt tall opphøyes i et partall?
Positivt
Lever svar
Negativt
Lever svar
Ubestemt
Lever svar
01:55
Hva blir produktet av to negative tall?
Positivt tall
Lever svar
Negativt tall
Lever svar
Null
Lever svar
02:13
Hva blir fortegnet når et negativt tall opphøyes i et oddetall?
Negativt
Lever svar
Positivt
Lever svar
Null
Lever svar
02:17
Hva skjer med fortegnet når eksponenten er partall?
Resultatet blir positivt
Lever svar
Resultatet blir negativt
Lever svar
Resultatet blir null
Lever svar
03:25
Hva gjør to minus-tegn med hverandre?
Opphever hverandre
Lever svar
Forsterker negativiteten
Lever svar
Blir til null
Lever svar
03:52
Gjelder samme fortegnsregler for deling som for ganging?
Ja
Lever svar
Nei
Lever svar
Bare noen ganger
Lever svar
03:55
Hva kalles tallene i en divisjon?
Dividend og divisor
Lever svar
Faktor og produkt
Lever svar
Teller og nevner
Lever svar
04:07
Hva blir resultatet når både teller og nevner er negative?
Positivt
Lever svar
Negativt
Lever svar
Null
Lever svar
04:14
Hva skjer med fortegnet når det er ett minus-tegn i brøken?
Resultatet blir negativt
Lever svar
Resultatet blir positivt
Lever svar
Fortegnet påvirkes ikke
Lever svar
04:20
Hvordan skriver vi en negativ brøk tydelig?
Setter minus foran brøken
Lever svar
Setter minus i telleren
Lever svar
Setter minus i nevneren
Lever svar
04:34
Hva skal vi se på i denne videoen?
Løsning av likninger
Lever svar
Regnerekkefølge
Lever svar
Brøkregning
Lever svar
00:00
Skal vi alltid regne pluss før gange?
Ja
Lever svar
Nei
Lever svar
Kun hvis det er parenteser
Lever svar
00:10
Kan tolkningen av et uttrykk uten parenteser variere?
Ja
Lever svar
Nei
Lever svar
Kun ved komplekse uttrykk
Lever svar
00:23
Hvorfor trenger vi regler for regnerekkefølge?
For å gjøre regning enklere
Lever svar
For å få ett riktig svar
Lever svar
For å unngå negative tall
Lever svar
00:30
Er rekkefølgen av operasjoner bestemt i matematikk?
Ja
Lever svar
Nei
Lever svar
Bare i avansert matematikk
Lever svar
00:55
Hva regner vi til slutt i regnerekkefølgen?
Potenser
Lever svar
Gange og dele
Lever svar
Pluss og minus
Lever svar
01:05
Hva er summen av to og femten?
Sytten
Lever svar
Tjue
Lever svar
Femten
Lever svar
01:54
Er det bare ett riktig svar i matematikk?
Ja
Lever svar
Nei
Lever svar
Det avhenger av situasjonen
Lever svar
01:59
Hva betyr det når det ikke står noe tegn mellom to tall eller uttrykk?
Addisjon
Lever svar
Multiplikasjon
Lever svar
Subtraksjon
Lever svar
02:03
Hvilken operasjon skal vi gjøre først ifølge reglene?
Potenser
Lever svar
Parenteser
Lever svar
Gange og dele
Lever svar
02:25
Hva bør du gjøre med regnerekkefølgen?
Lære den utenat
Lever svar
Slå den opp hver gang
Lever svar
Ignorere den
Lever svar
02:33
Hva er resultatet når vi trekker et større tall fra et mindre tall?
Et positivt tall
Lever svar
Null
Lever svar
Et negativt tall
Lever svar
02:42
Hvilken operasjon kommer før gange og dele i regnerekkefølgen?
Potenser
Lever svar
Parenteser
Lever svar
Pluss og minus
Lever svar
02:54
Hva skjer når vi ganger et positivt tall med et negativt tall?
Resultatet blir positivt
Lever svar
Resultatet blir negativt
Lever svar
Resultatet blir null
Lever svar
03:11
Hva skjer når vi ganger to negative tall?
Resultatet blir negativt
Lever svar
Resultatet blir positivt
Lever svar
Resultatet blir null
Lever svar
03:15
Hva skjer med fortegnet når vi har to negative faktorer?
Det blir negativt
Lever svar
Det blir positivt
Lever svar
Det blir nøytralt
Lever svar
03:34
Hva er minus minus?
Minus
Lever svar
Pluss
Lever svar
Null
Lever svar
03:38
Hva skjer når vi ganger et negativt tall med et positivt tall?
Resultatet blir negativt
Lever svar
Resultatet blir positivt
Lever svar
Resultatet blir null
Lever svar
03:50
Hvorfor er det viktig å være oppmerksom på fortegn når man regner?
For å få riktig resultat
Lever svar
Fortegn har ingen betydning
Lever svar
For å spare tid
Lever svar
03:57
Hvorfor kan det være lurt å vente med fortegnsdiskusjonen til slutt?
For å unngå forvirring
Lever svar
For å spare tid
Lever svar
For å få et større tall
Lever svar
04:05
Hvor viktig er det å følge regnerekkefølgen for å få riktig svar?
Ikke viktig
Lever svar
Litt viktig
Lever svar
Veldig viktig
Lever svar
04:16
Hvor mye er 23{ 2 -3 } ?
-5
Lever svar
-1
Lever svar
1
Lever svar
×
Tilbakestill oppgaven som uløst
×
Tilbakestill oppgaven som uløst
×
Tilbakestill oppgaven som uløst

Noen venner vil leie en seilbåt i sommerferien. Det koster 18 000 kroner å leie båten. Utgiftene skal deles likt mellom alle som blir med på turen.



a) Hvor mye må hver person betale dersom åtte personer blir med på turen?


b) Bestem et funksjonsuttrykk som viser hvor mye hver person må betale dersom personer blir med på turen.


c) Hvilken av de to grafene nedenfor kan være grafen til U ? Begrunn svaret ditt.


144 000 kr
Lever svar
18 000
Lever svar
2250
Lever svar
×
Tilbakestill oppgaven som uløst
×
Tilbakestill oppgaven som uløst
×
Tilbakestill oppgaven som uløst
Hvor mye er 2(2)(3){ 2 (-2) (-3) } ?
-12
Lever svar
7
Lever svar
12
Lever svar
×
Tilbakestill oppgaven som uløst
×
Tilbakestill oppgaven som uløst
×
Tilbakestill oppgaven som uløst
Hva blir 52(3){ 5 - 2 (-3) } ?
6
Lever svar
9
Lever svar
11
Lever svar
×
Tilbakestill oppgaven som uløst
×
Tilbakestill oppgaven som uløst
×
Tilbakestill oppgaven som uløst