×
VGS matematikk
1 - 2 - 3 klasse

Lær VGS matten fra A til Å
med de beste metodene

Enkelt å
holde fokus

Forstå det
vanskelige

Få god
oversikt

Øv på
riktig tema

Få hjelp når
du stopper opp

Anne-Lise Frivold Svendsen

Flott opplegg og undervisning😊

Karina Tellmann Marthinussen

Tusen takk!

Ruben Flatås

Gjorde unna R2 som privatist på et halvt år!! Mattevideo har gjort det mye lettere å fordøye et så tungt pensum på så kort tid. Tusen takk for hjelpa!!😊

Vilde Ågotnes

Bra undervisning!

Hamdi A Ahmed

Jeg er fornøyd med videone deres det har hjulpet meg til å bestå matten i både Vgs og Uni . Så takk😊

Halvard Balto

Meget bra!

Halil Ibrahim Keser

Tusen takk. Veldig flink lærer. Gode forklaringer.

Marte Forsberg

Helt topp :D

Jon Mills

Bra side.

Kirsti Beate Årsandøy

Kjempebra!😊

Mari Bertelsen

Bra side. Veldig gode forklaringer😊

Selma Voss

Tror dette kommer til å redde meg på noen prøver fremover. Takk! :D

Caja Magnussen

takk for hjelpen

Abdi Omar

Takk for læreren av denne siden. Det er utrolig en bra side, fikk meg mye. Tusen hjertelig takk

Olav Lunde Arneberg

Kan trygt anbefale Arne Hovland! Beste læreren jeg har hatt i løpet av drøyt 20 år med utdanning.

Daniel Gabrielsen

takk for denne siden :D min 1T mattelærer snakker så monotont og gjør matte så kjedelig at interessen svinner vekk og jeg sovner etter 5 minutter.

Kassi 17 år - har eksamen i R1 til våren.
Min lærer går litt for raskt gjennom r1 pensum, noe som gjør at jeg trenger repetisjon av de vanskeligste emnene...les mer
Liam 34 år - har eksamen i R2 til jul.
Jeg kjøpte medlemskap fordi jeg ønsket forklaring via video og tilgang på "lærer" hele døgnet. Mattevideo er...les mer
Oda 16 år - har eksamen i 1T til våren.
Jeg ble abonnement hos mattevideo fordi jeg slet med å forstå pensum i 1T. Jeg ønsket å prøve, for å se...les mer
Nicolai 21 år - har eksamen i R2 til sommeren.
Jeg ble medlem for å forbedre meg, og gå dypere inn i spesifikke temaer. Jeg går i 10. klasse og tar forsert løp...les mer
Daniel 15 år - har eksamen i 1t til våren.
Jeg ble medlem for å forbedre meg, og gå dypere inn i spesifikke temaer. Jeg går i 10. klasse og tar forsert løp...les mer
June 20 år - preppet til eksamen.
Jeg brukte mattevideo da jeg måtte ta opp igjen eksamen, selvlært. Min gamle lærer gjorde det veldig vanskelig å henge med...les mer
Velg ditt fag
S2 er et studieretningsfag på Vg3-nivå. S2 står for "Samfunnsfaglig matematikk 2" og bygger videre på S1.
Hele læreplan fra A til Å
Videoundervsining alle temaer
Korte og effektive selvtester
Vi gjennomgår eksamen
Organiser temaene etter ønsket lærebok
Kapittelinndeling: Mattevideo.no S2
×
Organiser innholdet etter din lærebok
Organiser videoer med ønskede ikoner
Organiser selvtester med ønskede ikoner
Rekker
, curr: s2, book: 667
09:41
15:19
02:19
08:08
05:02
13:17
10:17
17:10
14:47
28:33
28:19
15:14
Algebra
, curr: s2, book: 667
45:37
21:34
34:11
24:31
20:52
13:04
11:32
Derivasjon I
, curr: s2, book: 667
18:26
19:28
02:47
38:03
07:25
12:18
Derivasjon II
, curr: s2, book: 667
12:59
22:20
26:41
18:36
17:11
25:26
22:27
Økonomiske modeller
, curr: s2, book: 667
26:39
05:09
03:39
36:56
39:26
07:43
07:18
09:09
Sannsynlighet
, curr: s2, book: 667
09:08
13:23
08:45
04:59
04:01
06:19
11:02
06:23
37:35
10:14
04:00
11:08
05:57
04:31
02:16
10:04
10:29
10:50
02:05
06:44

Oppgåve 1 (4 poeng)


Deriver funksjonene

a)


b)


c)





Oppgåve 2 (5 poeng)

    Funksjonen f er gitt ved   ,  

a) Bestem eventuelle topp- eller bunnpunkt på grafen til f .

b) Bestem eventuelle vendepunkt på grafen til f.

c) Lag en skisse av grafen til f.




Oppgåve 3 (3 poeng)

   

a) Forklar at polynomet alltid er delelig med . b) Forkort brøken

Oppgåve 4 (3 poeng)

   

Løs likningssystemet




Oppgåve 5 (3 poeng)

    En rekke er gitt ved

a) Forklar at dette er en geometrisk rekke. Bestem et uttrykk for summen Sn av rekken.

b) Bestem summen av den uendelige rekken

Oppgåve 6 (4 poeng)

    En tallfølge er gitt ved

a) Skriv opp de fire første leddene i tallfølgen.

b) Vis at leddene og er delelige med henholdsvis 2, 3, 4 og 5.

c) Vis at er delelig med




Oppgåve 7 (4 poeng)

La være antall produserte og solgte enheter for en bedrift. De totale kostnadene er gitt ved Prisen for én enhet er gitt ved

a) Bestem et uttrykk for inntekten .

b) Bestem et uttrykk for overskuddet . Bestem den produksjonsmengden som gir det største overskuddet.




     

Oppgåve 8 (4 poeng)


I et terningspill på et kasino blir det kastet to vanlige terninger. Dersom summen av antall øyne er 10, får spilleren 200 kroner. Blir summen av antall øyne 7, får spilleren 50 kroner. Dersom summen blir et annet tall, får ikke spilleren gevinst. La a være prisen en spiller må betale for ett spill, og X utbyttet til kasinoet ved én tilfeldig spilleomgang.

a) Skriv av og fyll ut tabellen nedenfor

 

b) Hva bør kasinoet sette prisen a til for at de i det lange løp skal ha et gjennomsnittlig utbytte på 5 kroner per spill?




Oppgåve 9 (6 poeng)


I denne oppgaven kan du få bruk for tabellen over standard normalfordeling i vedlegg 1. Levetiden X til en type lyspærer er normalfordelt med forventet levetid timer og med et standardavvik timer.

a) Bestem sannsynligheten for at en tilfeldig valgt lyspære lyser færre enn 1600 timer.

b) Sannsynligheten er 90 % for at en tilfeldig valgt pære vil lyse i mer enn x timer. Bestem x.

c) Hvilken av de grafiske framstillingene nedenfor illustrerer X ? Begrunn svaret. S2-stat-opg9




Del 2 - med hjelpemiddel

Oppgåve 1 (8 poeng)


Maria trener på et apparat i et treningssenter. La f(x) være treningseffekten, det vil si antall kilojoule som forbrennes per minutt, x minutter etter starten på treningsøkten. Funksjonen f er gitt ved ,

a) Bruk graftegner til å tegne grafen til .

b) Bruk grafen til å bestemme treningseffekten etter 3 min og når treningseffekten er 50 kJ/min. Det samlede energiforbruket E, målt i kilojoule (kJ), i de første t minuttene av treningen er gitt ved

c) Bestem det samlede energiforbruket til Maria i løpet av de første 10 minuttene.

d) Anslå hvor lenge Maria må trene for at det samlede energiforbruket skal bli 1300 kJ.




 

Oppgåve 2 (8 poeng)


I 1992 skrev forskerne Ward og Whipp en artikkel i tidsskriftet Nature. De brukte regresjon til å hevde at de beste kvinnelige løperne før eller siden vil løpe like raskt som de mannlige på maratondistansen. I tabellene ser du gjennomsnittsfarten for verdensrekordløp i maraton for noen år.   Menn: d2opg2_tabell-menn   Kvinner: d2opg2_tabell-kvinner

a) Lag lineære modeller f og g for farten til menn og kvinner. La x være antall år etter 1900.

b) Hvilket år vil kvinner løpe like raskt som menn, ifølge modellene? Raskeste mannlige løper (Dennis Kimetto) løp i 2014 med en gjennomsnittsfart på 5,72 m/s, mens beste kvinnelige løper (Tirfi Tsegaye) samme år løp med en gjennomsnittsfart på 5,01 m/s.

c) Hvordan vurderer du gyldigheten til modellene ovenfor ut fra disse resultatene? En logistisk modell for gjennomsnittlig maratonfart (i m/s) for mennenes rekordløp x år etter 1900 er gitt ved:

d) Vi tenker oss at vi kan bruke den logistiske modellen også etter år 2000. Hvilket år vil da maraton første gang bli løpt på under to timer? Maratondistansen er 42 195 m.




Oppgåve 3 (4 poeng)

Et fond på 50 millioner kroner ble opprettet 1. januar 2015. Hensikten er å dele ut et fast beløp til gode formål den 31.12. hvert år. Styret for fondet gikk først ut fra at den årlige avkastningen ville bli 10,0 %.

a) Hvor mye penger kan maksimalt deles ut hvert år dersom fondet aldri skal gå tomt?

b) Når vil fondet være tomt for penger dersom det deles ut 8 millioner kroner hvert år?  

Oppgåve 4 (4 poeng)


Energiinnholdet i de tre produktene smøreost, helmelk og hvitost kommer fra næringsstoffene fett, karbohydrater og proteiner. Tabellen nedenfor viser næringsinnhold og samlet energiinnhold i 100 g av hvert av de tre produktene.   S2-tabell-opg4_d2

Sett opp et likningssystem og bruk CAS til å bestemme energiinnholdet (i kJ) i 1 g fett, 1 g karbohydrater og 1 g proteiner.




 

Vedlegg 1 Standard normalfordeling

  S2_Vedlegg1 Tabellen viser for Screen Shot 2016-08-22 at 08.40.01 Screen Shot 2016-08-22 at 08.40.13
Gratis Prøvesmak
Superteknikker
En til en veiledning
S2
 - Kapittelinndeling: Mattevideo.no S2 (gammel læreplan)
 - Derivasjon II
 - Derivasjon av produkt, derivasjon av brøk, kjerneregelen
×
06:37
Teori 1
Kjerneregelen.

r1_2604
×
02:36
Teori 2
Derivasjon av produkt.

r1_2606
03:46
Teori 3
Derivasjon av brøk.

r1_2609
02:52
Oppgave 1
Finn f'(x) når  f(x)=x23f(x)=\sqrt{x^2-3} .
02:35
Oppgave 2
Finn f''(x) når  f(x)=(2x2)3f(x)=(2-x^2)^3 .
03:14
Oppgave 3
Finn f''(x) når  f(x)=(3x2)xf(x)=(3x-2) \sqrt{x} .
08:19
Oppgave 4
Derivér funksjonen f(x)=(3x2+x)x22xf(x) = (3x^2+x) \sqrt{x^2-2x}
05:20
Oppgave 5
Derivér funksjonen f(x)=xx2+1f(x) = { \frac{x}{\sqrt { x^2+1}} } .
Skjul video ▼
Vis video ▲
Selvtester og oppgaver for mengdetrening
10 sekunders quiz
Eksamensoppgaver
×
Hvilken regel brukes for å derivere sammensatte funksjoner?
Produktregelen
Lever svar
Kjerneregelen
Lever svar
Kvotientregelen
Lever svar
00:00
Hva kalles ofte derivasjonsregelen for sammensatte funksjoner?
Produktregelen
Lever svar
Kjerneregelen
Lever svar
Ingen spesifikk regel
Lever svar
00:09
Hva kalles den innerste funksjonen i en sammensatt funksjon?
Summen
Lever svar
Kjernen
Lever svar
Ytterfunksjonen
Lever svar
00:19
Hva kjennetegner en sammensatt funksjon?
Flere ledd i sum
Lever svar
En funksjon inne i en annen
Lever svar
Kun en variabel
Lever svar
00:28
Hva er kjernen i en sammensatt funksjon?
Ytterste operasjon
Lever svar
Innerste funksjon
Lever svar
En konstant
Lever svar
00:35
Hva er en ytterfunksjon?
Den innerste delen
Lever svar
Den ytterste operasjonen
Lever svar
En tilfeldig faktor
Lever svar
00:41
Hva kalles den innerste delen av en sammensatt funksjon?
Ytre funksjon
Lever svar
Kjerne
Lever svar
Faktor
Lever svar
00:52
Hvilken bokstav brukes ofte for å representere kjernen?
v
Lever svar
u
Lever svar
w
Lever svar
01:09
Kan den ytre funksjonen navngis som g(u)?
Nei
Lever svar
Ja
Lever svar
Kun hvis u er konstant
Lever svar
01:27
Er det vanlig å bruke u-variabelen for kjernen?
Nei, uvanlig
Lever svar
Ja, vanlig
Lever svar
Det skaper forvirring
Lever svar
01:33
Hvordan finner man funksjonsverdien ved en gitt x-verdi?
Gjette
Lever svar
Sette inn x-verdien
Lever svar
Multiplisere med en konstant
Lever svar
01:36
Er kalkulator nødvendig for å finne funksjonsverdi?
Alltid
Lever svar
Nei, kan regne for hånd
Lever svar
Kun ved lineære funksjoner
Lever svar
01:49
Hva gjøres først ved evaluering av en sammensatt funksjon?
Trekke fra en konstant
Lever svar
Finne kjernens verdi
Lever svar
Ignorere kjernen
Lever svar
01:53
Hva gjør man etter å ha funnet kjernen?
Legge til et tall
Lever svar
Bruke ytterfunksjonen
Lever svar
Stoppe
Lever svar
02:15
Ved derivasjon av en sammensatt funksjon, hva må deriveres?
Bare kjernen
Lever svar
Ytre og kjerne
Lever svar
Ingenting
Lever svar
02:28
Kan en sammensatt funksjon skrives som u^5 for enkelhets skyld?
Nei
Lever svar
Ja
Lever svar
Kun i spesielle tilfeller
Lever svar
02:54
Hva er g(u) i dette eksempelet?
u^2
Lever svar
u^5
Lever svar
u+5
Lever svar
03:24
Er g(u) lik u^5?
Nei
Lever svar
Ja
Lever svar
Av og til
Lever svar
03:29
Hvordan finner vi g'(u)?
Multiplisere g(u) med x
Lever svar
Derivere med hensyn på u
Lever svar
Legge til u
Lever svar
03:32
Hva er g'(u) hvis g(u)=u^5?
4u^5
Lever svar
5u^4
Lever svar
u^5 - 1
Lever svar
03:38
Er derivasjonen av u^5 analog med x^5?
Nei
Lever svar
Ja
Lever svar
Delvis
Lever svar
03:43
Etter å ha derivert ytre funksjon, hva må gjøres?
Ingenting
Lever svar
Derivere kjernen
Lever svar
Legge til konstant
Lever svar
03:56
I kjerneregelen, hvilken rekkefølge brukes ved derivasjon?
Kjernen først
Lever svar
Ytre, så kjerne
Lever svar
Bare kjernen
Lever svar
04:02
Med hensyn til hvilken variabel deriveres kjernen vanligvis?
u
Lever svar
x
Lever svar
y
Lever svar
04:11
Er kjernen en funksjon av x?
Nei
Lever svar
Ja
Lever svar
Kun av y
Lever svar
04:16
Hva er (x²)'?
x
Lever svar
2x
Lever svar
Ingen endring
Lever svar
04:19
Hva er (2x)'?
x
Lever svar
2
Lever svar
0
Lever svar
04:25
Hva legger vi til ved derivasjon av 2x?
1
Lever svar
2
Lever svar
0
Lever svar
04:29
Hva har vi når kjernen er ferdig derivert?
En ny funksjon
Lever svar
Derivert kjerne
Lever svar
Ingen funksjon
Lever svar
04:33
Hvordan får vi f'(x) fra en sammensatt funksjon?
Derivere kjernen to ganger
Lever svar
Derivere ytre og multiplisere med kjernens deriverte
Lever svar
Bare kopiere funksjonen
Lever svar
04:36
Hva er G'(u) om G(u)=u^5?
u^4
Lever svar
5u^4
Lever svar
4u^5
Lever svar
04:43
Hva multipliseres G'(u) med for å få f'(x)?
x
Lever svar
u'
Lever svar
En konstant
Lever svar
04:50
Kan vi legge til ekstra mellomtrinn i derivasjonsprosessen?
Nei
Lever svar
Ja
Lever svar
Kun i slutten
Lever svar
04:58
Er det nyttig å huske hva u står for?
Nei
Lever svar
Ja
Lever svar
Bare for nybegynnere
Lever svar
05:04
Hva er u om u=x²+2x?
x
Lever svar
x²+2x
Lever svar
x² - x
Lever svar
05:07
Må vi også bruke u' i sluttresultatet?
Nei
Lever svar
Ja
Lever svar
Av og til
Lever svar
05:15
Hva er u' om u=x²+2x?
2x
Lever svar
2x+2
Lever svar
x+2x
Lever svar
05:18
Er kjernens deriverte alltid 1?
Ja
Lever svar
Nei
Lever svar
Kun når u=x
Lever svar
05:24
Hva er (u^5)' med hensyn på u?
u^4
Lever svar
5u^4
Lever svar
4u^5
Lever svar
05:40
Hvorfor blir derivert u^5 lik 5u^4?
Vi legger til et tall
Lever svar
U oppfører seg som x
Lever svar
Ingen grunn
Lever svar
05:45
Må vi ta hensyn til hvilken variabel vi deriverer med hensyn på?
Nei
Lever svar
Ja
Lever svar
Kun om x=1
Lever svar
05:53
Er det viktig å holde orden på eksponenter ved derivasjon?
Nei
Lever svar
Ja
Lever svar
Av og til
Lever svar
06:03
Får vi en koeffisient på 5 når u^5 deriveres?
Nei
Lever svar
Ja
Lever svar
Kun av og til
Lever svar
06:05
Kan man tenke høyt mens man løser derivasjonen?
Nei
Lever svar
Ja
Lever svar
Kun skriftlig
Lever svar
06:08
Er korrekt notasjon viktig ved derivasjon?
Nei
Lever svar
Ja
Lever svar
Delvis
Lever svar
06:13
Må man multiplisere ut alle parenteser etter derivasjon?
Ja
Lever svar
Nei
Lever svar
Kun i spesielle tilfeller
Lever svar
06:15
Er det greit å stoppe når uttrykket er fullstendig derivert?
Nei
Lever svar
Ja
Lever svar
Man må fortsette
Lever svar
06:29
Er kjerneregelen en metode for sammensatte funksjoner?
Nei
Lever svar
Ja
Lever svar
Bare lineære
Lever svar
06:32
Hvilken regel brukes for å derivere et produkt?
Produktregelen
Lever svar
Kjerneregelen
Lever svar
Ingen regel
Lever svar
00:00
Må begge funksjoner tas hensyn til ved derivasjon av et produkt?
Ja
Lever svar
Nei
Lever svar
Vet ikke
Lever svar
00:11
Hva er formen til produktregelen?
u'·v + u·v'
Lever svar
u + v
Lever svar
u'·v'
Lever svar
00:25
Krever produktregelen at man bruker både avledet og ikke-avledet funksjon?
Ja
Lever svar
Nei
Lever svar
Vet ikke
Lever svar
00:42
Hvilke symboler brukes ofte for funksjonene i et produkt?
u og v
Lever svar
a og b
Lever svar
x og y
Lever svar
00:51
Må funksjonene alltid omtales som u og v?
Ja, alltid
Lever svar
Nei, ikke nødvendig
Lever svar
Bare i noen tilfeller
Lever svar
00:57
Hva gjør vi med u' i produktregelen?
Multipliserer med v
Lever svar
Adderer med v
Lever svar
Ignorerer v
Lever svar
01:18
Skal den andre faktoren deriveres samtidig som den første?
Nei
Lever svar
Ja
Lever svar
Bare om nødvendig
Lever svar
01:28
Inngår et plusstegn i produktregelen?
Ja
Lever svar
Nei
Lever svar
Vet ikke
Lever svar
01:34
Benytter produktregelen begge funksjonene u og v?
Ja
Lever svar
Nei
Lever svar
Noen ganger
Lever svar
01:37
Trenger vi både u' og v' for produktregelen?
Ja
Lever svar
Nei
Lever svar
Vet ikke
Lever svar
01:42
Må begge funksjoner deriveres i løpet av prosessen?
Ja
Lever svar
Nei
Lever svar
Bare en
Lever svar
01:46
Kan resultatet av produktregelen bestå av flere ledd?
Ja
Lever svar
Nei
Lever svar
Bare to
Lever svar
01:53
Involverer produktregelen ofte algebraisk forenkling?
Ja
Lever svar
Nei
Lever svar
Aldri
Lever svar
01:56
Kan enkelte termer forsvinne ved forenkling?
Ja
Lever svar
Nei
Lever svar
Vet ikke
Lever svar
02:01
Er det vanlig å rydde opp i uttrykket etter bruk av produktregelen?
Ja
Lever svar
Nei
Lever svar
Vet ikke
Lever svar
02:04
Er forenkling hovedpoenget med produktregelen?
Nei
Lever svar
Ja
Lever svar
Vet ikke
Lever svar
02:11
Er produktregelen primært en derivasjonsmetode?
Ja
Lever svar
Nei
Lever svar
Kanskje
Lever svar
02:16
Viser produktregelen hvordan man deriverer et produkt av to funksjoner?
Ja
Lever svar
Nei
Lever svar
Noen ganger
Lever svar
02:22
Hva trenger man for å legge sammen to brøker?
Samme teller
Lever svar
Fellesnevner
Lever svar
Minste heltall
Lever svar
00:00
Hva kalles tallet over brøkstreken?
Teller
Lever svar
Nevner
Lever svar
Produkt
Lever svar
00:22
Hva er målet med delbrøksoppspalting?
Å multiplisere to brøker
Lever svar
Å dele en sammensatt brøk i enklere deler
Lever svar
Å finne en eksakt tallverdi
Lever svar
00:32
Hva er et nyttig steg før integrasjon av en komplisert brøk?
Delbrøksoppspalting
Lever svar
Å legge sammen brøker
Lever svar
Å ignorere nevneren
Lever svar
01:09
Hva kalles tallene man ikke kjenner i en brøkoppdeling?
Variabler (a og b)
Lever svar
Konstanter
Lever svar
Operatorer
Lever svar
01:20
Hva kan en av de ukjente i en oppdelt brøk vise seg å være?
Et positivt eller negativt tall
Lever svar
Alltid null
Lever svar
Alltid større enn 10
Lever svar
01:42
Kan man alltid vite de ukjente tallene i en brøk på forhånd?
Nei
Lever svar
Ja
Lever svar
Kun ved hoderegning
Lever svar
01:49
Hva gjør man når man ikke vet tallene i en brøkoppdeling?
Man kaller dem for a og b
Lever svar
Man fjerner brøken
Lever svar
Man gjetter tilfeldig
Lever svar
01:51
Hva kalles en brøkdel som inneholder x og en konstant?
Et ledd
Lever svar
Et produkt
Lever svar
En sum
Lever svar
01:56
Hva kalles uttrykket under brøkstreken?
Nevner
Lever svar
Teller
Lever svar
Integrand
Lever svar
02:00
Hva kalles uttrykket over brøkstreken?
Teller
Lever svar
Nevner
Lever svar
Sum
Lever svar
02:02
Hva gjør man for å fjerne en brøks nevner?
Man multipliserer med fellesnevneren
Lever svar
Man legger til 1
Lever svar
Man dividerer med telleren
Lever svar
02:11
Hvilket ledd i en brøk forsvinner når vi multipliserer med hele nevneren?
Nevneren
Lever svar
Telleren
Lever svar
Faktorene i telleren
Lever svar
02:18
Hva kaller vi prosessen der nevneren blir «forkortet» vekk?
Forkorting
Lever svar
Strekking
Lever svar
Rotering
Lever svar
02:21
Hva er hensikten med å forkorte en brøk?
Å forenkle uttrykket
Lever svar
Å øke verdien
Lever svar
Å fjerne x
Lever svar
02:34
Hva pleier å skje med nevnerne når vi multipliserer med fellesnevneren?
De kanselleres
Lever svar
De dobles
Lever svar
De blir negative
Lever svar
02:39
Hva kalles prosessen med å skrive et uttrykk i forenklet form?
Renskriving
Lever svar
Faktorisering
Lever svar
Integrering
Lever svar
02:43
Hva står igjen når vi har forkortet brøken fullstendig?
Bare telleren
Lever svar
Bare nevneren
Lever svar
Et helt tall
Lever svar
02:45
Hva kalles en ukjent konstant i en ligning?
En variabel
Lever svar
En brøk
Lever svar
En eksponent
Lever svar
02:52
Hva gjør vi når vi multipliserer en konstant inn i en parentes?
Vi distribuerer konstanten
Lever svar
Vi fjerner x
Lever svar
Vi deler alt på 2
Lever svar
02:55
Kan en ukjent i en brøkoppdeling kalles for bokstaven «b»?
Ja
Lever svar
Nei
Lever svar
Bare om x=0
Lever svar
03:08
Hva kan man gjøre for å oversiktliggjøre et brøkuttrykk?
Rydde opp i det algebraisk
Lever svar
Fjern x
Lever svar
Telle bare med hodet
Lever svar
03:10
Hvilken del av et uttrykk inneholder som regel x?
Det variable leddet
Lever svar
Det konstante leddet
Lever svar
Det kvadratiske leddet
Lever svar
03:16
Hva kan x representere i en ligning?
En ukjent verdi
Lever svar
Alltid tallet 1
Lever svar
En fast koeffisient
Lever svar
03:19
Hva symboliserer «=» i en ligning?
Likhetstegn
Lever svar
Summetegn
Lever svar
Fortegn
Lever svar
03:22
Hva kalles summen av a x og b x?
(a + b) · x
Lever svar
(a - b) · x
Lever svar
2ab
Lever svar
03:23
Hva kalles prosessen når vi tar ut x som en felles faktor?
Faktorisering
Lever svar
Divisjon
Lever svar
Invertering
Lever svar
03:33
Hva betyr det å skrive et uttrykk på en «sånn» form?
Å omskrive uttrykket
Lever svar
Å slette x
Lever svar
Å gjøre alt om til brøker
Lever svar
03:36
Hvilke deler består et algebraisk uttrykk av?
Variable og konstante ledd
Lever svar
Kun tall
Lever svar
Kun bokstaver
Lever svar
03:40
Hva kalles tallene som ikke ganger x i et uttrykk?
Konstante ledd
Lever svar
Variabler
Lever svar
Parametere
Lever svar
03:45
Hva betyr tegnet «=» i en likning?
At venstre og høyre side er like
Lever svar
At venstre side er større
Lever svar
At høyre side er mindre
Lever svar
03:49
Hva kalles uttrykket (a + b)x + (a - 2b)?
En omskrevet form av brøken
Lever svar
En differens
Lever svar
En integralverdi
Lever svar
03:56
Hva sammenlignes på venstre og høyre side av «=»?
Koeffisienter og konstanter
Lever svar
Bare konstanter
Lever svar
Bare x
Lever svar
04:00
Hva kalles tallet som multipliserer x i et uttrykk?
Koeffisient
Lever svar
Konstantledd
Lever svar
Nevner
Lever svar
04:05
Hva må koeffisientene være hvis vi har 2x på venstre side?
Summen av dem må bli 2
Lever svar
De må alle være 1
Lever svar
De kan ikke brukes
Lever svar
04:17
Hva kalles tallet uten x i et uttrykk?
Konstantledd
Lever svar
Koeffisient
Lever svar
Eksponent
Lever svar
04:25
Hvor mange ukjente er det i et enkelt to-ligningssystem?
To
Lever svar
Én
Lever svar
Tre
Lever svar
04:49
Kan man bruke kalkulator for å løse to ligninger med to ukjente?
Ja
Lever svar
Nei
Lever svar
Kun i hodet
Lever svar
04:53
Hva er en enkel definisjon på et ligningssett?
Flere likninger som løses samtidig
Lever svar
En brøk med x
Lever svar
En sum av brøker
Lever svar
05:04
Hva skjer ofte når man løser et ligningssett med to ukjente?
Man finner verdier for begge ukjente
Lever svar
Man ender med uendelig mange løsninger
Lever svar
Man kan ikke løse det
Lever svar
05:09
Kan en av de ukjente bli et negativt tall?
Ja
Lever svar
Nei
Lever svar
Bare hvis x=0
Lever svar
05:12
Bør man alltid kontrollregne løsningen sin?
Ja, om mulig
Lever svar
Nei, aldri
Lever svar
Kun i teori
Lever svar
05:14
Hva kan a være hvis a ble funnet til å være 3?
En koeffisient
Lever svar
En teller
Lever svar
Et brøkstykke
Lever svar
05:19
Hva kan b være hvis b ble funnet til å være -1?
En koeffisient
Lever svar
En teller
Lever svar
Et produkt
Lever svar
05:23
Hva betyr det at «(2x + 5) / (2x + 1)» er lik a?
At brøken kan uttrykkes med en bestemt konstant i toppen
Lever svar
At x=0
Lever svar
At brøken ikke har noen verdi
Lever svar
05:25
Kan «a» være 3 i en delbrøksoppspalting?
Ja
Lever svar
Nei
Lever svar
Bare hvis man ikke bruker kalkulator
Lever svar
05:46
Hva kalles uttrykket 3/(x-2)?
En enkel brøk
Lever svar
En sum
Lever svar
En integrert funksjon
Lever svar
05:48
Hva kalles det å legge sammen 3/(x-2) og -1/(x+1)?
En sammensatt brøk
Lever svar
En kvotient
Lever svar
En heltallsdivisjon
Lever svar
05:52
Hva betyr et minus foran en brøk?
At brøken er negativ
Lever svar
At brøken blir null
Lever svar
At x=1
Lever svar
05:57
Kan brøker med ulike nevnere deles opp i sum av enklere brøker?
Ja, ved delbrøksoppspalting
Lever svar
Nei, aldri
Lever svar
Bare hvis x er negativ
Lever svar
06:03
Hva er første steg i å lære delbrøksoppspalting?
Å splitte en brøk i to enklere brøker
Lever svar
Å gange alt med 0
Lever svar
Å fjerne x fullstendig
Lever svar
06:12
Kan man skrive en komplisert brøk som to separate brøker?
Ja
Lever svar
Nei
Lever svar
Bare i spesielle tilfeller
Lever svar
06:21
Hva er den deriverte til (x23x)2(x^2-3x)^2 ?
2(x23x)(2x3)2(x^2-3x)(2x-3)
Lever svar
(2x3)2(2x-3)^2
Lever svar
2(2x3)2(2x-3)
Lever svar
×
Tilbakestill oppgaven som uløst
×
Tilbakestill oppgaven som uløst
×
Tilbakestill oppgaven som uløst
Den deriverte til 3x2(x22x)3x^2 (x^2-2x) = ?
6x(2x2)6x (2x-2)
Lever svar
6x(x22x)+3x2(2x2)6x (x^2-2x) + 3x^2(2x-2)
Lever svar
noe annet enn de to første alternativene, vi må nemlig gange ut parentesene først.
Lever svar
×
Tilbakestill oppgaven som uløst
×
Tilbakestill oppgaven som uløst
×
Tilbakestill oppgaven som uløst
Den deriverte til x2+1x1\frac {x^2+1}{x-1} = ?
2x1\frac{2x }{ 1 }
Lever svar
[2x(x1)(x2+1)(x1)2\frac{2x(x-1) - (x^2+1)}{(x-1)^2 }
Lever svar
Funksjonen er ikke kontinuerlig i x = 1, den er derfor ikke deriverbar.
Lever svar
×
Tilbakestill oppgaven som uløst
×
Tilbakestill oppgaven som uløst
×
Tilbakestill oppgaven som uløst