×
VGS matematikk
1 - 2 - 3 klasse

Lær VGS matten fra A til Å
med de beste metodene

Enkelt å
holde fokus

Forstå det
vanskelige

Få god
oversikt

Øv på
riktig tema

Få hjelp når
du stopper opp

Anne-Lise Frivold Svendsen

Flott opplegg og undervisning😊

Karina Tellmann Marthinussen

Tusen takk!

Ruben Flatås

Gjorde unna R2 som privatist på et halvt år!! Mattevideo har gjort det mye lettere å fordøye et så tungt pensum på så kort tid. Tusen takk for hjelpa!!😊

Vilde Ågotnes

Bra undervisning!

Hamdi A Ahmed

Jeg er fornøyd med videone deres det har hjulpet meg til å bestå matten i både Vgs og Uni . Så takk😊

Halvard Balto

Meget bra!

Halil Ibrahim Keser

Tusen takk. Veldig flink lærer. Gode forklaringer.

Marte Forsberg

Helt topp :D

Jon Mills

Bra side.

Kirsti Beate Årsandøy

Kjempebra!😊

Mari Bertelsen

Bra side. Veldig gode forklaringer😊

Selma Voss

Tror dette kommer til å redde meg på noen prøver fremover. Takk! :D

Caja Magnussen

takk for hjelpen

Abdi Omar

Takk for læreren av denne siden. Det er utrolig en bra side, fikk meg mye. Tusen hjertelig takk

Olav Lunde Arneberg

Kan trygt anbefale Arne Hovland! Beste læreren jeg har hatt i løpet av drøyt 20 år med utdanning.

Daniel Gabrielsen

takk for denne siden :D min 1T mattelærer snakker så monotont og gjør matte så kjedelig at interessen svinner vekk og jeg sovner etter 5 minutter.

Kassi 17 år - har eksamen i R1 til våren.
Min lærer går litt for raskt gjennom r1 pensum, noe som gjør at jeg trenger repetisjon av de vanskeligste emnene...les mer
Liam 34 år - har eksamen i R2 til jul.
Jeg kjøpte medlemskap fordi jeg ønsket forklaring via video og tilgang på "lærer" hele døgnet. Mattevideo er...les mer
Oda 16 år - har eksamen i 1T til våren.
Jeg ble abonnement hos mattevideo fordi jeg slet med å forstå pensum i 1T. Jeg ønsket å prøve, for å se...les mer
Nicolai 21 år - har eksamen i R2 til sommeren.
Jeg ble medlem for å forbedre meg, og gå dypere inn i spesifikke temaer. Jeg går i 10. klasse og tar forsert løp...les mer
Daniel 15 år - har eksamen i 1t til våren.
Jeg ble medlem for å forbedre meg, og gå dypere inn i spesifikke temaer. Jeg går i 10. klasse og tar forsert løp...les mer
June 20 år - preppet til eksamen.
Jeg brukte mattevideo da jeg måtte ta opp igjen eksamen, selvlært. Min gamle lærer gjorde det veldig vanskelig å henge med...les mer
Velg ditt fag
S2 er et studieretningsfag på Vg3-nivå. S2 står for "Samfunnsfaglig matematikk 2" og bygger videre på S1.
Hele læreplan fra A til Å
Videoundervsining alle temaer
Korte og effektive selvtester
Vi gjennomgår eksamen
Organiser temaene etter ønsket lærebok
Kapittelinndeling: Mattevideo.no S2
×
Organiser innholdet etter din lærebok
Organiser videoer med ønskede ikoner
Organiser selvtester med ønskede ikoner
Rekker
, curr: s2, book: 667
09:41
15:19
02:19
08:08
05:02
13:17
10:17
17:10
14:47
28:33
28:19
15:14
Algebra
, curr: s2, book: 667
45:37
21:34
34:11
24:31
20:52
13:04
11:32
Derivasjon I
, curr: s2, book: 667
18:26
19:28
02:47
38:03
07:25
12:18
Derivasjon II
, curr: s2, book: 667
12:59
22:20
26:41
18:36
17:11
25:26
22:27
Økonomiske modeller
, curr: s2, book: 667
26:39
05:09
03:39
36:56
39:26
07:43
07:18
09:09
Sannsynlighet
, curr: s2, book: 667
09:08
13:23
08:45
04:59
04:01
06:19
11:02
06:23
37:35
10:14
04:00
11:08
05:57
04:31
02:16
10:04
10:29
10:50
02:05
06:44

Oppgåve 1 (4 poeng)


Deriver funksjonene

a)


b)


c)





Oppgåve 2 (5 poeng)

    Funksjonen f er gitt ved   ,  

a) Bestem eventuelle topp- eller bunnpunkt på grafen til f .

b) Bestem eventuelle vendepunkt på grafen til f.

c) Lag en skisse av grafen til f.




Oppgåve 3 (3 poeng)

   

a) Forklar at polynomet alltid er delelig med . b) Forkort brøken

Oppgåve 4 (3 poeng)

   

Løs likningssystemet




Oppgåve 5 (3 poeng)

    En rekke er gitt ved

a) Forklar at dette er en geometrisk rekke. Bestem et uttrykk for summen Sn av rekken.

b) Bestem summen av den uendelige rekken

Oppgåve 6 (4 poeng)

    En tallfølge er gitt ved

a) Skriv opp de fire første leddene i tallfølgen.

b) Vis at leddene og er delelige med henholdsvis 2, 3, 4 og 5.

c) Vis at er delelig med




Oppgåve 7 (4 poeng)

La være antall produserte og solgte enheter for en bedrift. De totale kostnadene er gitt ved Prisen for én enhet er gitt ved

a) Bestem et uttrykk for inntekten .

b) Bestem et uttrykk for overskuddet . Bestem den produksjonsmengden som gir det største overskuddet.




     

Oppgåve 8 (4 poeng)


I et terningspill på et kasino blir det kastet to vanlige terninger. Dersom summen av antall øyne er 10, får spilleren 200 kroner. Blir summen av antall øyne 7, får spilleren 50 kroner. Dersom summen blir et annet tall, får ikke spilleren gevinst. La a være prisen en spiller må betale for ett spill, og X utbyttet til kasinoet ved én tilfeldig spilleomgang.

a) Skriv av og fyll ut tabellen nedenfor

 

b) Hva bør kasinoet sette prisen a til for at de i det lange løp skal ha et gjennomsnittlig utbytte på 5 kroner per spill?




Oppgåve 9 (6 poeng)


I denne oppgaven kan du få bruk for tabellen over standard normalfordeling i vedlegg 1. Levetiden X til en type lyspærer er normalfordelt med forventet levetid timer og med et standardavvik timer.

a) Bestem sannsynligheten for at en tilfeldig valgt lyspære lyser færre enn 1600 timer.

b) Sannsynligheten er 90 % for at en tilfeldig valgt pære vil lyse i mer enn x timer. Bestem x.

c) Hvilken av de grafiske framstillingene nedenfor illustrerer X ? Begrunn svaret. S2-stat-opg9




Del 2 - med hjelpemiddel

Oppgåve 1 (8 poeng)


Maria trener på et apparat i et treningssenter. La f(x) være treningseffekten, det vil si antall kilojoule som forbrennes per minutt, x minutter etter starten på treningsøkten. Funksjonen f er gitt ved ,

a) Bruk graftegner til å tegne grafen til .

b) Bruk grafen til å bestemme treningseffekten etter 3 min og når treningseffekten er 50 kJ/min. Det samlede energiforbruket E, målt i kilojoule (kJ), i de første t minuttene av treningen er gitt ved

c) Bestem det samlede energiforbruket til Maria i løpet av de første 10 minuttene.

d) Anslå hvor lenge Maria må trene for at det samlede energiforbruket skal bli 1300 kJ.




 

Oppgåve 2 (8 poeng)


I 1992 skrev forskerne Ward og Whipp en artikkel i tidsskriftet Nature. De brukte regresjon til å hevde at de beste kvinnelige løperne før eller siden vil løpe like raskt som de mannlige på maratondistansen. I tabellene ser du gjennomsnittsfarten for verdensrekordløp i maraton for noen år.   Menn: d2opg2_tabell-menn   Kvinner: d2opg2_tabell-kvinner

a) Lag lineære modeller f og g for farten til menn og kvinner. La x være antall år etter 1900.

b) Hvilket år vil kvinner løpe like raskt som menn, ifølge modellene? Raskeste mannlige løper (Dennis Kimetto) løp i 2014 med en gjennomsnittsfart på 5,72 m/s, mens beste kvinnelige løper (Tirfi Tsegaye) samme år løp med en gjennomsnittsfart på 5,01 m/s.

c) Hvordan vurderer du gyldigheten til modellene ovenfor ut fra disse resultatene? En logistisk modell for gjennomsnittlig maratonfart (i m/s) for mennenes rekordløp x år etter 1900 er gitt ved:

d) Vi tenker oss at vi kan bruke den logistiske modellen også etter år 2000. Hvilket år vil da maraton første gang bli løpt på under to timer? Maratondistansen er 42 195 m.




Oppgåve 3 (4 poeng)

Et fond på 50 millioner kroner ble opprettet 1. januar 2015. Hensikten er å dele ut et fast beløp til gode formål den 31.12. hvert år. Styret for fondet gikk først ut fra at den årlige avkastningen ville bli 10,0 %.

a) Hvor mye penger kan maksimalt deles ut hvert år dersom fondet aldri skal gå tomt?

b) Når vil fondet være tomt for penger dersom det deles ut 8 millioner kroner hvert år?  

Oppgåve 4 (4 poeng)


Energiinnholdet i de tre produktene smøreost, helmelk og hvitost kommer fra næringsstoffene fett, karbohydrater og proteiner. Tabellen nedenfor viser næringsinnhold og samlet energiinnhold i 100 g av hvert av de tre produktene.   S2-tabell-opg4_d2

Sett opp et likningssystem og bruk CAS til å bestemme energiinnholdet (i kJ) i 1 g fett, 1 g karbohydrater og 1 g proteiner.




 

Vedlegg 1 Standard normalfordeling

  S2_Vedlegg1 Tabellen viser for Screen Shot 2016-08-22 at 08.40.01 Screen Shot 2016-08-22 at 08.40.13
Gratis Prøvesmak
Superteknikker
En til en veiledning
S2
 - Kapittelinndeling: Mattevideo.no S2 (gammel læreplan)
 - Algebra
 - Polynomdivisjon
×
05:36
Teori 1
Vi varmer opp til polynomdivisjon, ved å se på divisjon av vanlige tall.

s2_02_02_teori1
×
08:53
Teori 2
Polynomdivisjon (med og uten rest).

(x313x+12):(x1)(x^3 - 13x + 12):(x-1)
03:14
Teori 3
Polynomdivisjon og faktorisering.

s2_02_02_teori3
03:51
Teori 4
Hva kan polynomet deles på? Et polynom kan deles på (x - a) dersom polynomet har a som nullpunkt. Vi ser på hvorfor det er slik.

s2_02_02_teori4
11:35
Oppgave 1
Gitt funksjonen  f(x)=2x3+8x2+2x12f(x)=2x^3 +8x^2+2x-12
   a) Undersøk om  f(x)  er delelig med:  1) (x-1),  2) (x+1),  3) (x-2)
   b) Faktoriser  f(x) .
02:09
Oppgave 2
Bestem tallet a slik at divisjonen  (x3+ax2+ax+4):(x+2)(x^3 + ax^2 +ax +4) : (x+2)  går opp.
07:47
Oppgave 3
Gitt likningen x36x2+11x6=0x^3 - 6x^2 +11x -6 = 0 .
Undersøk om 0, 1, eller 2 er løsning på likningen.
Løs deretter likningen. 
12:40
Oppgave 4
Forkort brøken  3x36x215x+183x212{ \frac{3{x^3} - 6{x^2} - 15x +18}{3 {x^2} - 12}} .
Skjul video ▼
Vis video ▲
Selvtester og oppgaver for mengdetrening
10 sekunders quiz
Eksamensoppgaver
×
Hva skal vi undersøke i videoen?
Hvordan løse en likning
Lever svar
Hvilke uttrykk et polynom kan deles på
Lever svar
Hvorfor tall blir negative
Lever svar
00:00
Hva slags uttrykk deler vi polynomet på?
Andregradsuttrykk
Lever svar
Førstegradsuttrykk
Lever svar
Konstanter
Lever svar
00:08
Hva betyr det å faktorisere et polynom?
Legge til flere ukjente
Lever svar
Skrive det som produkt av enklere faktorer
Lever svar
Beregne et integral
Lever svar
00:27
Hva kaller vi et matematisk uttrykk med variabler og koeffisienter?
En likning
Lever svar
Et polynom
Lever svar
En brøk
Lever svar
00:40
Hva kalles verdier av x som gir polynomet verdien null?
Koeffisienter
Lever svar
Nullpunkter
Lever svar
Røtter av en likning
Lever svar
00:42
Hvis (x - a) er en faktor, hva er a?
En vilkårlig konstant
Lever svar
Et nullpunkt
Lever svar
En koeffisient
Lever svar
01:10
Hva blir summen når du legger til det motsatte av et tall?
Det opprinnelige tallet
Lever svar
Null
Lever svar
Ett
Lever svar
01:18
Hvordan sjekker man om et tall er et nullpunkt for et polynom?
Legg til 1 og se om det øker
Lever svar
Sett inn tallet og sjekk om resultatet er 0
Lever svar
Ignorer tallet
Lever svar
01:24
Hvordan finner man verdien av et polynom for en bestemt x?
Trekke fra x to ganger
Lever svar
Erstatte x med verdien og regne ut
Lever svar
Legge til koeffisientene
Lever svar
01:39
Hva betyr det hvis P(a) = 0?
a er en tilfeldig konstant
Lever svar
x = a er et nullpunkt
Lever svar
Polynomet er alltid 0
Lever svar
01:52
Hvis x = a er et nullpunkt, hva kan polynomet deles på?
a - x
Lever svar
x - a
Lever svar
x + a
Lever svar
02:20
Må man bruke et bestemt nullpunkt for å dele polynomet?
Ja, alltid det største
Lever svar
Nei, alle nullpunkter fungerer
Lever svar
Ja, alltid det minste
Lever svar
02:35
Kan et polynom med flere nullpunkter deles på (x - hver av disse nullpunktene)?
Nei
Lever svar
Ja
Lever svar
Bare noen ganger
Lever svar
02:58
Hvis a er et nullpunkt, kan polynomet deles på (x - a)?
Nei
Lever svar
Ja
Lever svar
Bare hvis a er positiv
Lever svar
03:09
Hvordan sjekker man om (x - a) deler et polynom P(x)?
Test om P(a)=1
Lever svar
Test om P(a)=0
Lever svar
Test om P(x)=a
Lever svar
03:34
Hva kan polynomdivisjon brukes til?
Å legge sammen tall
Lever svar
Å faktorisere polynomer
Lever svar
Å gjøre om brøker
Lever svar
00:00
24 delt på 8 blir?
6
Lever svar
3
Lever svar
4
Lever svar
00:23
Hva betyr "ekvivalent" her?
At to uttrykk er likeverdige
Lever svar
At tallene er ulike
Lever svar
At det er et tilfeldig symbol
Lever svar
00:37
Hva ble gjort med uttrykkene?
De ble ganget
Lever svar
De ble subtrahert
Lever svar
De ble delt
Lever svar
01:17
Hvilke termer nevnes men trenger ikke pugges?
Dividende og devisor
Lever svar
Koeffisient og konstant
Lever svar
Sum og differens
Lever svar
01:20
Hvilken aritmetisk setning sammenlignes med polynomdivisjon?
24/8=3
Lever svar
2+2=4
Lever svar
10-3=7
Lever svar
01:28
Hva får vi ved å faktorisere et tredjegradspolynom?
Flere faktorer
Lever svar
Ingen faktorer
Lever svar
Bare en faktor
Lever svar
01:34
Hvilke tall ble valgt for faktoriseringen?
3 og 4
Lever svar
2 og 6
Lever svar
1 og 12
Lever svar
02:20
Hvor mange faktorer kan tredjegradspolynomet splittes i?
3
Lever svar
2
Lever svar
4
Lever svar
02:46
Hva er et eksempel på en førstepartsfaktor?
x - 1
Lever svar
x + 2
Lever svar
x - 4
Lever svar
02:55
Hvilke to faktorer fikk vi fra andregradspolynomet?
x - 3 og x + 4
Lever svar
x - 2 og x + 6
Lever svar
x - 1 og x + 5
Lever svar
03:00
Hva handler polynomdivisjon om?
Å dele polynomer på hverandre.
Lever svar
Å multiplisere polynomer.
Lever svar
Å addere polynomer.
Lever svar
00:00
Hvor mange eksempler skal vi gå gjennom først?
To
Lever svar
Tre
Lever svar
Fire
Lever svar
00:26
Hva er det første steget i divisjonsalgoritmen?
Finne hvor mange ganger divisoren går opp i de første sifrene.
Lever svar
Multiplisere divisoren med dividenden.
Lever svar
Legge sammen divisoren og dividenden.
Lever svar
00:38
Hva gjør vi hvis det første sifferet er mindre enn divisoren?
Tar med neste siffer.
Lever svar
Skriver ned null.
Lever svar
Stopper delingen.
Lever svar
00:43
Hva gjør vi når tallet fortsatt er for lite til å dele på divisoren?
Tar med enda et siffer til.
Lever svar
Legger til null i svaret.
Lever svar
Multipliserer divisoren.
Lever svar
00:48
Hva skriver vi i kvotienten når divisoren går én gang opp i tallet?
1
Lever svar
0
Lever svar
9
Lever svar
00:53
Hvor mange ganger går 9 opp i 15?
1 gang
Lever svar
2 ganger
Lever svar
3 ganger
Lever svar
01:02
Hva gjør vi etter å ha funnet hvor mange ganger divisoren går opp i tallet?
Multipliserer kvotienten med divisoren og skriver resultatet under.
Lever svar
Legger kvotienten til divisoren.
Lever svar
Deler kvotienten på divisoren.
Lever svar
01:03
Hva gjør vi med resultatet etter multiplikasjonen?
Trekker det fra tallet over.
Lever svar
Legger det til tallet over.
Lever svar
Skriver det som sluttresultat.
Lever svar
01:09
Hva finner vi når vi trekker produktet fra tallet over?
Resten
Lever svar
Kvotienten
Lever svar
Divisoren
Lever svar
01:16
Hva gjør vi hvis resten er mindre enn divisoren?
Henter ned neste siffer fra dividenden.
Lever svar
Avslutter delingen.
Lever svar
Legger til null i kvotienten.
Lever svar
01:25
Hva gjør vi hvis divisoren ikke går opp i tallet nøyaktig?
Finner det største multiplum som er mindre enn tallet.
Lever svar
Legger til flere nuller til tallet.
Lever svar
Avrunder oppover til neste multiplum.
Lever svar
01:44
Hvorfor skriver vi tallet 7 i kvotienten når vi deler 65 på 9?
Fordi 9 ganger 7 er det største produktet under 65.
Lever svar
Fordi 9 ganger 7 er over 65.
Lever svar
Fordi 7 er resten.
Lever svar
01:54
Hva gjør vi etter å ha funnet neste siffer i kvotienten?
Gjentar prosessen med subtraksjon og nedhenting av sifre.
Lever svar
Avslutter delingen.
Lever svar
Multipliserer kvotienten med en ny divisor.
Lever svar
02:23
Hva får vi når vi trekker 63 fra 65?
2
Lever svar
0
Lever svar
4
Lever svar
02:25
Hvorfor er det viktig å velge det største multiplum som er mindre enn tallet vi deler?
For å minimere resten og fortsette delingen korrekt.
Lever svar
For å få en større kvotient.
Lever svar
For å unngå å få null i resten.
Lever svar
02:47
Hva gjør vi etter å ha hentet ned det siste sifferet?
Deler det nye tallet på divisoren.
Lever svar
Avslutter regnestykket.
Lever svar
Multipliserer det nye tallet med divisoren.
Lever svar
03:01
Hva indikerer det når resten blir null?
At delingen går opp.
Lever svar
At vi har gjort en feil.
Lever svar
At vi må fortsette delingen.
Lever svar
03:06
Hva betyr det når det ikke er flere sifre å hente ned?
At delingen er ferdig.
Lever svar
At vi må legge til desimaler.
Lever svar
At vi starter på nytt.
Lever svar
03:12
Hva skjer hvis delingen ikke går opp?
Vi får en rest.
Lever svar
Vi får en feil kvotient.
Lever svar
Vi må dele på nytt.
Lever svar
03:40
Hva kalles tallet som blir igjen når delingen ikke går opp?
Rest
Lever svar
Kvotient
Lever svar
Divisor
Lever svar
03:45
Hva skjer hvis vi deler 1559 på 9?
Vi får en rest.
Lever svar
Delingen går opp uten rest.
Lever svar
Vi får null i kvotient.
Lever svar
03:51
Hva kan vi gjøre hvis vi ønsker å fortsette delingen etter å ha fått en rest?
Legge til et komma og null i dividenden.
Lever svar
Avslutte delingen.
Lever svar
Multiplisere resten med divisoren.
Lever svar
05:17
Hvordan kan vi uttrykke resten som en brøk?
Resten delt på divisoren.
Lever svar
Dividenden delt på resten.
Lever svar
Divisoren delt på resten.
Lever svar
05:24
Hva betyr det å skrive svaret som et blandet tall?
Å kombinere heltallsdelen med brøkdelen.
Lever svar
Å skrive svaret kun som en brøk.
Lever svar
Å ignorere resten.
Lever svar
05:27
Du skal regne ut 623 : 9 med blyant og papir. Hvordan starte?
Begynner med 23 : 9
Lever svar
Finner det største tallet man kan gange 9 med og få maksimalt 62
Lever svar
Finner det minste tallet man kan gange 9 med å få minst 62
Lever svar
×
Tilbakestill oppgaven som uløst
×
Tilbakestill oppgaven som uløst
×
Tilbakestill oppgaven som uløst
Hvoran begynne utregningen av (2x33x7):(x1)(2x^3-3x-7) : (x-1) ?

Det venstre leddet i 2x33x72x^3-3x-7 delt på det venstre leddet i x1x-1

Lever svar

Det høyre leddet i 2x33x72x^3-3x-7 delt på det høyre leddet i x1x-1

Lever svar

Det venstre leddet i 2x33x72x^3-3x-7 delt på det høyre leddet i x1x-1

Lever svar
×
Tilbakestill oppgaven som uløst
×
Tilbakestill oppgaven som uløst
×
Tilbakestill oppgaven som uløst
Hvis et polynom P(x) har nullpnktet x=a så er P(x) delelig med
a
Lever svar
(x-a)
Lever svar
(x+a)
Lever svar
×
Tilbakestill oppgaven som uløst
×
Tilbakestill oppgaven som uløst
×
Tilbakestill oppgaven som uløst
Hvis et polynom P(x) er delelig med (x+2), er da (x+2) en faktor i P(x) ?
Ja
Lever svar
Nei
Lever svar
Noen ganger, men det trenger ikke være slik.
Lever svar
×
Tilbakestill oppgaven som uløst
×
Tilbakestill oppgaven som uløst
×
Tilbakestill oppgaven som uløst

Funksjonen P er gitt ved

P(x)=x33x2+4,DP=RP(x) = x^{3} - 3x^{2} + 4 , D_P = \mathbb{R}

  • a) Bestem P(2)

  • b) Bruk polynomdivisjon til å faktorisere P(x) i lineære faktorer.

Se løsning og registrer oppgaven
×

Et polynom P er gitt ved:


   P(x)=x36x2+9x4\ \ \ P(x) = x^3 - 6x^2 + 9x - 4


a) Begrunn at P(x)P(x) er delelig med (x1)(x -1).

b) Faktoriser P(x)P(x) i førstegradsfaktorer.

Se løsning og registrer oppgaven
×

Et polynom P er gitt ved:


   P(x)=x36x2+9x4\ \ \ P(x) = x^3 - 6x^2 + 9x - 4


a) Begrunn at P(x)P(x) er delelig med (x1)(x -1).

b) Faktoriser P(x)P(x) i førstegradsfaktorer.

Se løsning og registrer oppgaven
×