×
VGS matematikk
1 - 2 - 3 klasse

Lær VGS matten fra A til Å
med de beste metodene

Enkelt å
holde fokus

Forstå det
vanskelige

Få god
oversikt

Øv på
riktig tema

Få hjelp når
du stopper opp

Anne-Lise Frivold Svendsen

Flott opplegg og undervisning😊

Karina Tellmann Marthinussen

Tusen takk!

Ruben Flatås

Gjorde unna R2 som privatist på et halvt år!! Mattevideo har gjort det mye lettere å fordøye et så tungt pensum på så kort tid. Tusen takk for hjelpa!!😊

Vilde Ågotnes

Bra undervisning!

Hamdi A Ahmed

Jeg er fornøyd med videone deres det har hjulpet meg til å bestå matten i både Vgs og Uni . Så takk😊

Halvard Balto

Meget bra!

Halil Ibrahim Keser

Tusen takk. Veldig flink lærer. Gode forklaringer.

Marte Forsberg

Helt topp :D

Jon Mills

Bra side.

Kirsti Beate Årsandøy

Kjempebra!😊

Mari Bertelsen

Bra side. Veldig gode forklaringer😊

Selma Voss

Tror dette kommer til å redde meg på noen prøver fremover. Takk! :D

Caja Magnussen

takk for hjelpen

Abdi Omar

Takk for læreren av denne siden. Det er utrolig en bra side, fikk meg mye. Tusen hjertelig takk

Olav Lunde Arneberg

Kan trygt anbefale Arne Hovland! Beste læreren jeg har hatt i løpet av drøyt 20 år med utdanning.

Daniel Gabrielsen

takk for denne siden :D min 1T mattelærer snakker så monotont og gjør matte så kjedelig at interessen svinner vekk og jeg sovner etter 5 minutter.

Kassi 17 år - har eksamen i R1 til våren.
Min lærer går litt for raskt gjennom r1 pensum, noe som gjør at jeg trenger repetisjon av de vanskeligste emnene...les mer
Liam 34 år - har eksamen i R2 til jul.
Jeg kjøpte medlemskap fordi jeg ønsket forklaring via video og tilgang på "lærer" hele døgnet. Mattevideo er...les mer
Oda 16 år - har eksamen i 1T til våren.
Jeg ble abonnement hos mattevideo fordi jeg slet med å forstå pensum i 1T. Jeg ønsket å prøve, for å se...les mer
Nicolai 21 år - har eksamen i R2 til sommeren.
Jeg ble medlem for å forbedre meg, og gå dypere inn i spesifikke temaer. Jeg går i 10. klasse og tar forsert løp...les mer
Daniel 15 år - har eksamen i 1t til våren.
Jeg ble medlem for å forbedre meg, og gå dypere inn i spesifikke temaer. Jeg går i 10. klasse og tar forsert løp...les mer
June 20 år - preppet til eksamen.
Jeg brukte mattevideo da jeg måtte ta opp igjen eksamen, selvlært. Min gamle lærer gjorde det veldig vanskelig å henge med...les mer
Velg ditt fag
R1 er et studieretningsfag på Vg2-nivå. R1 står for "Realfaglig matematikk".
Hele læreplan fra A til Å
Videoundervsining alle temaer
Korte og effektive selvtester
Vi gjennomgår eksamen
Organiser temaene etter ønsket lærebok
Kapittelinndeling: Mønster R1
×
Organiser innholdet etter din lærebok
Organiser videoer med ønskede ikoner
Organiser selvtester med ønskede ikoner
Potenser og logaritmer
, curr: r1, book: 1850
23:19
15:57
07:43
03:24
32:19
04:32
19:38
30:59
17:39
30:06
Funksjoner
, curr: r1, book: 1850
41:31
13:28
63:10
08:47
18:05
25:05
21:31
25:42
27:48
Derivasjon
, curr: r1, book: 1850
49:39
12:23
12:16
45:16
76:21
10:18
01:15
Funksjonsdrøfting
, curr: r1, book: 1850
08:40
107:24
47:06
04:37
Vektorer
, curr: r1, book: 1850
13:11
09:29
31:13
35:05
64:00
20:47
25:39
56:12
42:00
14:51
16:57
Flere temaer
, curr: r1, book: 1850
111:29
70:05
Eksamenstid 5 timer Del 1 (Uten hjelpemidler) skal leveres etter 2 timer. Del 2 (Med hjelpemidler) skal leveres etter senest 5 timer.

Oppgave 1 (5 poeng)

  Deriver funksjonene

a) f(x)=2x35x+4f(x)=2x^3-5x+4

b) g(x)=x2exg(x)=x^2e^x

c) h(x)=x23h(x)=\sqrt{x^2-3}

   

Oppgave 2 (4 poeng)

  Skriv så enkelt som mulig

a) x23x29+1x+3+5x3{\frac{x^2-3}{x^2-9} + \frac{1}{x+3} + \frac{5}{x-3}}

b) 2ln(a3b2)    3ln(ba2)2 \cdot ln(a^{-3} \cdot b^{2}) \ \ - \ \ 3 \cdot ln(\frac{b}{a^2})

 

Oppgave 3 (4 poeng)

  Tre punkt A(1,6)A(-1,6), B(2,1)B(2,1) og C(4,4)C(4,4) er gitt.

a) Bestem AB\overrightarrow{AB} og AC\overrightarrow{AC}

  Et punkt DD er gitt slik at

b) Bestem koordinatene til DD

Oppgave 4 (6 poeng)

  Funksjonen P er gitt ved

P(x)=2x36x22x+6{P(x)=2x^3-6x^2-2x+6}

 
a) Begrunn at (1,0){(1,0)} er et vendepunkt på grafen til P{P}.
b) Faktoriser P(x){P(x)} i lineære faktorer.
c) Løs likningen

2e3x6e2x2ex+6=0{2e^{3x}-6e^{2x}-2e^x+6=0}

 

Oppgave 5 (6 poeng)

 

Hjørnene i en trekant er A(1,0){A(1,0)} , B(6,2){B(6,2)} og C(3,5){C(3,5)} . Midtpunktene på sidene i trekanten er D{D}, E{E} og F{F}. Se figuren.

a) Forklar at koordinatene til punktene D{D}, E{E} og F{F} er

D(92,72){D \big(\frac{9}{2},\frac{7}{2} \big)}, E(2,52){E \big(2, \frac{5}{2} \big)} og F(72,1){F \big(\frac{7}{2}, 1 \big)}

Skjæringspunktet mellom medianene i trekanten er T.

b) Forklar at vi kan skrive AT{\overrightarrow{AT}} på to måter:

AT=sAD    ,    s=R{\overrightarrow{AT} = s \cdot \overrightarrow{AD}} \ \ \ \ , \ \ \ \ s = \mathbb{R}

AT=AB+tBE    ,    t=R{\overrightarrow{AT} = \overrightarrow{AB} + t \cdot \overrightarrow{BE}} \ \ \ \ , \ \ \ \ t = \mathbb{R}

der s og t er reelle tall.

c) Bruk vektorlikningene i oppgave b) til å bestemme s og t. Bestem koordinatene til T.

Oppgave 6 (4 poeng)

  En fabrikk produserer lyspærer. Alle lyspærene blir kontrollert. I kontrollen blir 8,0 % av lyspærene forkastet. Nærmere undersøkelser viser at
  • 92,0 % av de forkastede lyspærene er defekte
  • 2,0 % av de godkjente lyspærene er defekte
a) Vis at sannsynligheten er 9,2 % for at en tilfeldig produsert lyspære er defekt.
b) Bruk Bayes' setning til å bestemme sannsynligheten for at en defekt lyspære blir forkastet i kontrollen.    

Oppgave 7 (7 poeng)

En rettvinklet ΔABC\Delta{ABC} der C=90o\angle{C} = 90^{o} er gitt. Den innskrevne sirkelen har sentrum i S{S} og radius r{r}. Sirkelen tangerer trekanten i punktene D{D}, E{E} og F{F}. Vi setter AC=b{AC = b}, BC=a{BC = a} og AB=c{ AB = c}. Du får oppgitt at BF=BE{BF = BE} og AD=AE{AD = AE}

a) Bruk figuren til å forklare at a=BF+r{a = BF +r} og b=AD+r{b = AD +r}

Av figuren ser vi dessuten at c=AE+BE{c = AE + BE}

b) Vis at a+bc=2r{a + b - c = 2r}

c) Forklare at vi kan skrive arealet T av trekanten på to måter:

T=12ab{T = \frac{1}{2} \cdot a \cdot b} og T=12r(a+b+c){T = \frac{1}{2} \cdot r \cdot (a+b+c)}

d) Bruk resultatene du fant i oppgavene b) og c) til å utlede Pytagoras' setning.

DEL 2 - Med hjelpemidler

Oppgave 1 (6 poeng)

  I en kortstokk er det 52 kort. Kortene er fordelt på de fire fargene hjerter, ruter, spar og kløver. Hver farge har 13 kort fordelt på verdiene 2 til 10, knekt, dame, konge og ess. Tenk deg at du skal trekke tilfeldig fem kort fra kortstokken.

a) Bestem sannsynligheten for at du kommer til å trekke nøyaktig tre kort med verdi 10.

b) Bestem sannsynligheten for at du kommer til å trekke nøyaktig tre kort med samme verdi.

c) Bestem sannsynligheten for at alle kortene du kommer til å trekke, har samme farge.

Figur 1: Ett mulig utfall i oppgave a) Figur 2: Ett mulig utfall i oppgave b) Figur 3: Ett mulig utfall i oppgave c)  

Oppgave 2 (6 poeng)

Posisjonsvektoren til en partikkel er gitt ved

r(t)=[t21,t3t]{\overrightarrow{r}(t)= \left[ t^2-1,t^3-t \right] }

a) Tegn grafen til r{\overrightarrow{r}} når t[32,32]t \in \left[ -\frac{3}{2}, \frac{3}{2} \right].
b) Bestem fertsvektoren v(t){\overrightarrow{v}}(t) og akselerasjonsvektoren a(t){\overrightarrow{a}(t)}.
c) Bruk CAS til å bestemme den minste banefarten til partikkelen.

Oppgave 3 (4 poeng)

En stige på 7,0 m er stilt opp langs en vegg. Stigen danner sammen med veggen og bakken en rettvinkler ΔABC{\Delta{ABC}}. Se figuren. Vi setterAC=x{ AC = x}. Den korteste avstanden fra C{C } til stigen er d{d} meter.

a) Vis at d=x49x27d = {\frac{x \sqrt{49-x^2}}{7} }

b) Bestem x{x} slik at d{d} blir lengst mulig.

Hvor lang er d for denne verdien av x ?

 

 

Oppgave 4 (8 poeng)

  Funksjonen f{f } er gitt ved

f(x)=2x36x2+5x{f(x)=2x^3 - 6x^2 + 5x}

a) Bruk graftegner til å tegne grafen til f{f}.

Grafen tilf{ f} har tre tangenter som går gjennom punktetA(4,3){ A(4, 3)} .

b) Forklar at x-koordinaten til tangeringspunktene må være løsning av likningen

f(x)3x4=f(x){{\frac{f(x)-3}{x-4}} = f'(x)}

c) Bruk CAS til å løse denne likningen. Bestem likningen til hver av tangentene.

La P(a,b){P(a, b)} være et punkt i planet.

d) Hva er det maksimale antallet tangenter grafen til f{f }kan ha som går gjennom P{P }?

Gratis Prøvesmak
Superteknikker
En til en veiledning
R1
 - Kapittelinndeling: Mønster R1 (oppdatert læreplan)
 - Derivasjon
 - Numerisk derivasjon
×
06:41
Teori 1
Vi lager en python-kode som finner tilnærmingsverdier for den deriverte utifra definisjonen (av den deriverte).r1-2021_03_05_teori1_19902_1523_1600
×
03:37
Teori 2
Den symmetriske newtonkoeffisienten gir bedre tilnærmingsverdier.
01:15
Oppgave 1
Vi dervierer x\sqrt{x} ved å bruke regelen for derivasjon av potensfunksjoner.
Skjul video ▼
Vis video ▲
Selvtester og oppgaver for mengdetrening
10 sekunders quiz
Eksamensoppgaver
×
Hva er hensikten med en presentasjon?
Å vise informasjon
Lever svar
Å forvirre publikum
Lever svar
Å skjule budskap
Lever svar
00:01
Hva betyr det å finpusse kode?
Å forbedre koden
Lever svar
Å slette koden
Lever svar
Å ignorere koden
Lever svar
00:06
Hva betyr det at noe er symmetrisk?
Det er likt på begge sider
Lever svar
Det er alltid skjevt
Lever svar
Det mangler balanse
Lever svar
00:17
Hva beskriver en deriverte i matematikk?
Endringsraten til en funksjon
Lever svar
Fargen på et tall
Lever svar
Størrelsen på en sirkel
Lever svar
00:21
Hva er en tangent?
En linje som berører en kurve i ett punkt
Lever svar
Et tall større enn 10
Lever svar
Et musikkinstrument
Lever svar
00:37
Hva menes med å nærme seg en verdi?
At man kommer stadig tettere på verdien
Lever svar
At man fjerner seg fra verdien
Lever svar
At man ignorerer verdien
Lever svar
00:52
Hva er en funksjon i matematikk?
En regel som kobler hver input til én output
Lever svar
Et tilfeldig tall
Lever svar
En musikalsk komposisjon
Lever svar
01:04
Hva gjør man når man deler noe på to?
Man halverer det
Lever svar
Man dobler det
Lever svar
Man ignorerer det
Lever svar
01:12
Hva betyr det å utvide kode?
Å legge til mer funksjonalitet
Lever svar
Å slette all funksjonalitet
Lever svar
Å gjøre koden tom
Lever svar
02:04
Hvorfor kan symmetri være nyttig?
Det gir bedre balanse
Lever svar
Det gjør ting alltid tilfeldig
Lever svar
Det forhindrer all endring
Lever svar
02:19
Hvorfor kan det være nyttig å se resultatet av noe?
For å forstå effekten
Lever svar
For å ignorere det
Lever svar
For å forvirre seg selv
Lever svar
02:57
Hva er hensikten med utskrift fra et program?
Å vise informasjon til brukeren
Lever svar
Å gjøre programmet stille
Lever svar
Å skjule resultater
Lever svar
03:05
Hvorfor er det bra at en beregning blir mer nøyaktig?
Man får mer pålitelig informasjon
Lever svar
Man blir mer forvirret
Lever svar
Man får ingen nytte av det
Lever svar
03:07
Hva betyr det å flisespikke?
Å være svært pirkete med detaljer
Lever svar
Å ignorere presisjon
Lever svar
Å gjøre store endringer raskt
Lever svar
03:30
Hva betyr det at noe ikke er uinteressant?
At det har en viss interesse
Lever svar
At det er helt kjedelig
Lever svar
At det er umulig å forstå
Lever svar
03:35
Hvordan kan du skrive delta i Spyder?
Delta
Lever svar
deltax
Lever svar
Det går ikke.
Lever svar
×
Tilbakestill oppgaven som uløst
×
Tilbakestill oppgaven som uløst
×
Tilbakestill oppgaven som uløst
Hva er Newtonkoeffisienten?
Det samme som gjennomsnittlig vekstfart.
Lever svar
Definisjonen av den deriverte uten limx0\lim_{\bigtriangleup x\rightarrow 0}.
Lever svar
Definisjonen av den deriverte.
Lever svar
×
Tilbakestill oppgaven som uløst
×
Tilbakestill oppgaven som uløst
×
Tilbakestill oppgaven som uløst