×
VGS matematikk
1 - 2 - 3 klasse

Lær VGS matten fra A til Å
med de beste metodene

Enkelt å
holde fokus

Forstå det
vanskelige

Få god
oversikt

Øv på
riktig tema

Få hjelp når
du stopper opp

Anne-Lise Frivold Svendsen

Flott opplegg og undervisning😊

Karina Tellmann Marthinussen

Tusen takk!

Ruben Flatås

Gjorde unna R2 som privatist på et halvt år!! Mattevideo har gjort det mye lettere å fordøye et så tungt pensum på så kort tid. Tusen takk for hjelpa!!😊

Vilde Ågotnes

Bra undervisning!

Hamdi A Ahmed

Jeg er fornøyd med videone deres det har hjulpet meg til å bestå matten i både Vgs og Uni . Så takk😊

Halvard Balto

Meget bra!

Halil Ibrahim Keser

Tusen takk. Veldig flink lærer. Gode forklaringer.

Marte Forsberg

Helt topp :D

Jon Mills

Bra side.

Kirsti Beate Årsandøy

Kjempebra!😊

Mari Bertelsen

Bra side. Veldig gode forklaringer😊

Selma Voss

Tror dette kommer til å redde meg på noen prøver fremover. Takk! :D

Caja Magnussen

takk for hjelpen

Abdi Omar

Takk for læreren av denne siden. Det er utrolig en bra side, fikk meg mye. Tusen hjertelig takk

Olav Lunde Arneberg

Kan trygt anbefale Arne Hovland! Beste læreren jeg har hatt i løpet av drøyt 20 år med utdanning.

Daniel Gabrielsen

takk for denne siden :D min 1T mattelærer snakker så monotont og gjør matte så kjedelig at interessen svinner vekk og jeg sovner etter 5 minutter.

Kassi 17 år - har eksamen i R1 til våren.
Min lærer går litt for raskt gjennom r1 pensum, noe som gjør at jeg trenger repetisjon av de vanskeligste emnene...les mer
Liam 34 år - har eksamen i R2 til jul.
Jeg kjøpte medlemskap fordi jeg ønsket forklaring via video og tilgang på "lærer" hele døgnet. Mattevideo er...les mer
Oda 16 år - har eksamen i 1T til våren.
Jeg ble abonnement hos mattevideo fordi jeg slet med å forstå pensum i 1T. Jeg ønsket å prøve, for å se...les mer
Nicolai 21 år - har eksamen i R2 til sommeren.
Jeg ble medlem for å forbedre meg, og gå dypere inn i spesifikke temaer. Jeg går i 10. klasse og tar forsert løp...les mer
Daniel 15 år - har eksamen i 1t til våren.
Jeg ble medlem for å forbedre meg, og gå dypere inn i spesifikke temaer. Jeg går i 10. klasse og tar forsert løp...les mer
June 20 år - preppet til eksamen.
Jeg brukte mattevideo da jeg måtte ta opp igjen eksamen, selvlært. Min gamle lærer gjorde det veldig vanskelig å henge med...les mer
Velg ditt fag
2P er et studieretningsfag på Vg2-nivå. 2P står for "Praktisk matematikk" og bygger videre på 1P.
Hele læreplan fra A til Å
Videoundervsining alle temaer
Korte og effektive selvtester
Vi gjennomgår eksamen
Organiser temaene etter ønsket lærebok
Kapittelinndeling: Sinus 2P
×
Organiser innholdet etter din lærebok
Organiser videoer med ønskede ikoner
Organiser selvtester med ønskede ikoner
Prosent
, curr: 2p, book: 2005
07:32
05:53
02:19
12:43
20:34
02:17
21:43
03:49
07:43
Likninger og ulikheter
, curr: 2p, book: 2005
31:31
41:26
53:54
08:57
24:31
25:23
12:43
Økonomi
, curr: 2p, book: 2005
05:46
17:35
07:17
32:17
22:31
30:35
19:33
Statistikk - analyse og presentasjon
, curr: 2p, book: 2005
10:27
05:04
06:10
02:42
09:20
Sentralmål og spredningsmål
, curr: 2p, book: 2005
12:49
18:37
18:21
05:00
Geometri
, curr: 2p, book: 2005
04:45
06:33
09:22
17:26
12:02
30:39
14:24
24:02
17:12
42:43
13:00
03:54
Eksamenstid 5 timer Del 1 (Uten hjelpemidler) skal leveres etter 2 timer. Del 2 (Med hjelpemidler) skal leveres etter senest 5 timer.
0_3

Oppgave 1 (1 poeng)

Skriv tallene nedenfor på standardform  
19 milliarder  
0,0891060,089\cdot10^{-6}

Oppgave 2 (2 poeng)

 
Tegn av tabellen nedenfor i besvarelsen din, og fyll inn det som mangler. 2p_eks_del1_02  

Oppgave 3 (3 poeng)

Regn ut  

a) a6(a4)2a0a^6\cdot(a^4)^{-2}\cdot a^0

 

b) 3293272\frac{3^{-2}\cdot9^3}{27^2}

Oppgave 4 (4 poeng)

2p_eks_del1_04  
a) Bestem gjennomsnittet og medianen for dette datamaterialet.  
b) Bestem den kumulative frekvensen for to mål. Hva betyr dette?

Oppgave 5 (2 poeng)

En vare selges i to forskjellige butikker. Prisen er den samme i begge butikkene.  
  • I butikk A settes prisen opp med 20 %.
  • I butikk B settes prisen først opp med 10 %, og så etter noen dager med 10 % til.
Marit påstår at prisen da fremdeles er den samme i begge butikkene. Forklar Marit hvorfor dette ikke er riktig.

Oppgave 6 (2 poeng)

Ved en skole er det 120 elever. Elevrådet skal arrangere aktivitetsdag, og elevene kan melde seg på én av fire turer. Elevene fordeler seg slik:   2p_eks_del1_06
Gjør beregninger og lag et sektordiagram som viser fordelingen. Det skal gå klart fram hvor mange grader hver av sektorene i diagrammet er på.

Oppgave 7 (2 poeng)

Ved en skole er det 100 elever i Vg1. En lærer har undersøkt hvor mye tid elevene bruker på matematikkleksene i løpet av en uke. Resultatene er gitt i tabellen nedenfor.   2p_eks_del1_07
Hvor lang tid bruker en elev i gjennomsnitt på matematikkleksene i løpet av en uke?

Oppgave 8 (2 poeng)

Whisky lagres på tønner. En tønne på 500 L fylles opp og blir plassert på lager. Hvert år fordamper omtrent 2 % av innholdet i tønnen.  

a) Sett opp et uttrykk som du kan bruke til å regne ut hvor mange liter whisky det vil være igjen i tønnen etter 12 år.

 

b) Sett opp et uttrykk som du kan bruke til å regne ut hvor mange liter whisky som vil ha fordampet fra tønnen etter 20 år.

Oppgave 9 (2 poeng)

2p_eks_del1_09  
Kine og Mina har deltatt i en svømmekonkurranse. Ovenfor ser du en forenklet grafisk framstilling av svømmeturen til Kine (blå graf) og svømmeturen til Mina (rød graf). Hva kan du si om de to svømmeturene ut fra grafene?

Oppgave 10 (4 poeng)

Stig har fått en kakeoppskrift fra tante Mathilde i Amerika. I oppskriften står det at kaken skal stekes på 350 °F. Han lurer på hvor mange grader celsius dette tilsvarer. Stig har en gradestokk utenfor kjøkkenvinduet som viser både celsiusgrader og fahrenheitgrader. Se bildet under til høyre.  

a) Tegn av tabellen nedenfor i besvarelsen din. Bruk gradestokken til høyre, og fyll ut tabellen.

2p_eks_del1_10_a  

b) Tegn et koordinatsystem med grader fahrenheit langs x- aksen og grader celsius langs y-aksen. Marker verdiene fra tabellen i a) som punkter i koordinatsystemet.

 

c) Tegn en rett linje som går gjennom punktene. Bruk linjen til å finne ut hvor mange grader celsius Stig skal steke kaken på.

2p_eks_del2_0

Oppgave 1 (6 poeng)

  2p_eks_del2_01 Snorre veide 3,1 kg da han ble født. Tabellen nedenfor viser vekten hans, y kg, x dager etter fødselen. 2p_eks_del2_01_1  

a) Bruk regresjon til å bestemme en lineær modell for Snorres vekt ut fra datamaterialet i tabellen ovenfor.

 

b) Hvor lang tid vil det gå før Snorre veier 7,0 kg ut fra modellen i oppgave a)?

En ettåring veier normalt mellom 8,0 kg og 12,0 kg.  

c) Bruk modellen du fant i oppgave a) til å bestemme Snorres vekt etter 365 dager. Kommenter resultatet.

 

Oppgave 2 (6 poeng)

2p_eks_del2_02 Våren 2012 var klasse 2A og klasse 2B ved en skole oppe til eksamen i matematikk 2P. Tabellen nedenfor viser hvordan karakterene fordelte seg i de to klassene. 2p_eks_del2_02_a  
a) Bruk regneark til å lage en grafisk framstilling som viser karakterfordelingen i de to klassene.  
b) Bruk regneark til å bestemme gjennomsnittskarakter, mediankarakter og standardavvik for karakterene i hver av de to klassene. Hva forteller svarene om resultatene i de to klassene?

Oppgave 3 (5 poeng)

Politiet har gjennomført fartskontroller på to veistrekninger. Den ene veistrekningen har fartsgrense 50 km/h og den andre 80 km/h. Nedenfor ser du resultatene fra hver av de to kontrollene. 2p_eks_del2_03  
a) Bestem gjennomsnittsfarten til bilene i hver av de to kontrollene.  
b) Hvor mange prosent  av bilførerne kjørte 10 % eller mer over fartsgrensen i hver av de to kontrollene?

Oppgave 4 (4 poeng)

I en teatersal er det 580 plasser. På første stolrad er det 10 plasser. På andre stolrad er det 12 plasser, og på tredje stolrad er det 14 plasser. Se figuren nedenfor. 2p_eks_del2_04 Slik fortsetter det å øke med to plasser for hver stolrad bakover i salen.  

a) Hvor mange stolrader er det i salen?

På første stolrad er billettprisen 350 kroner. På stolrad nummer to er billettprisen 340 kroner. Slik går billettprisen ned med 10 kroner for hver stolrad bakover i salen.  

b) På hvilken stolrad koster billettene mest til sammen?

Oppgave 5 (5 poeng)

  2p_eks_del2_05 Sondre lager figurer med klosser etter et fast mønster. Ovenfor ser du m1, m2 og m3.  

a) Følg samme mønster, og tegn m4. Hvor mange klosser trenger Sondre for å lage m5 og for å lage m6?

b) Sett opp en modell som viser hvor mange klosser Sondre trenger for å lage mn, uttrykt ved n. Bruk modellen til å bestemme hvor mange klosser han trenger for å lage m20.

 

Oppgave 6 (4 poeng)

  2p_eks_del2_06 En bonde har 500 m gjerde. Han skal lage et rektangulært område som han skal dele i tre like store deler. Vi setter bredden i rektanglet lik x og lengden lik y. Se figuren ovenfor.  

a) Vis at arealet av området er gitt ved

A(x)=2x2+250xA(x) = -2x^2 + 250x

 

b) Bruk graftegner til å bestemme x slik at arealet av området blir størst mulig. Hvor stort er arealet da?

Oppgave 7 (6 poeng)

2p_eks_del2_07 Vibeke har fått en bakterieinfeksjon og tar tabletter med antibiotika. En tablett inneholder 220 mg antibiotika. Antall milligram antibiotika i kroppen reduseres med 11 % hver time.  

a) Vibeke tar én tablett. Hvor mange milligram antibiotika er det igjen i kroppen hennes etter én time, og hvor mange milligram antibiotika er det igjen i kroppen hennes etter åtte timer?

Vibeke tar en tablett hver åttende time.  

b) Hvor mange milligram antibiotika har hun i kroppen rett etter at hun har tatt sin andre tablett, og hvor mange milligram antibiotika har hun i kroppen rett etter at hun har tatt sin tredje tablett?

 

c) Skisser grafen som viser hvor mange milligram antibiotika Vibeke til enhver tid har i kroppen det første døgnet etter at hun begynte å ta tablettene.

Gratis Prøvesmak
Superteknikker
En til en veiledning
2P
 - Kapittelinndeling: Sinus 2P (oppdatert læreplan)
 - Prosent
 - Eksponentiell regresjon
×
07:43
Oppgave 1
Bestem verdiene for c og k slik at funksjonen cekxc \cdot e^{kx}går gjennom punktene (2,5) og (4,2).
×
03:49
Teori 1
Eksponentiell vekst, regresjon 2p-2021_01_03_teori2_21623_1954-2016
Skjul video ▼
Vis video ▲
Selvtester og oppgaver for mengdetrening
10 sekunders quiz
Eksamensoppgaver
×
Er eksponentiell regresjon en metode for å beskrive vekst?
Nei
Lever svar
Ja
Lever svar
Bare for lineære data
Lever svar
00:00
Kan en populasjon øke over tid i et gunstig miljø?
Aldri
Lever svar
Ja
Lever svar
Kun hvis den er konstant
Lever svar
00:08
Øker en raskt voksende bestand betydelig i løpet av få timer?
Nei, den holder seg stabil
Lever svar
Ja, den kan det
Lever svar
Bare hvis timene er over 24
Lever svar
00:18
Brukes funksjonsmodeller for å forutsi utvikling over tid?
Ja
Lever svar
Nei, aldri
Lever svar
Kun for statiske data
Lever svar
00:30
Er det nyttig å organisere data i en tabell før analyse?
Ja, det gir oversikt
Lever svar
Nei, det er bortkastet
Lever svar
Kun hvis data er lineære
Lever svar
00:34
Bør man justere visningen for å se alle punkter tydelig?
Nei, det er unødvendig
Lever svar
Ja, da får man oversikt
Lever svar
Det spiller ingen rolle
Lever svar
00:52
Kan man lage en liste med punkter av merkede data?
Ja
Lever svar
Nei
Lever svar
Bare med lineær regresjon
Lever svar
01:03
Finnes det ofte et regnearkverktøy i matematiske programmer?
Ja
Lever svar
Nei
Lever svar
Kun i tekstbehandlere
Lever svar
01:07
Er høyreklikk ofte en snarvei for flere valg?
Ja
Lever svar
Nei
Lever svar
Bare i nettlesere
Lever svar
01:10
Kan man panorere i et grafisk vindu for bedre oversikt?
Ja, absolutt
Lever svar
Nei, det forblir fast
Lever svar
Bare i tekstmodus
Lever svar
01:15
Er det lurt å vurdere justeringer i visningen underveis?
Nei, man bør aldri endre noe
Lever svar
Ja, man bør tilpasse etter behov
Lever svar
Kun før man starter
Lever svar
01:26
Hjelper små justeringer i koordinatsystemet for å se data tydelig?
Ja
Lever svar
Nei
Lever svar
Bare ved lineær funksjon
Lever svar
01:30
Er det ofte nok å se et par hovedpunkter for å vurdere trenden?
Ja, som en rask sjekk
Lever svar
Nei, man må se alt
Lever svar
Bare hvis data ikke endres
Lever svar
01:32
Bør man kontrollere at punktene stemmer med tabellen?
Ja, for å unngå feil
Lever svar
Nei, ikke nødvendig
Lever svar
Bare hvis grafen mangler
Lever svar
01:35
Kan eksponentialregresjon gi oss en funksjon for dataene?
Nei, den gir bare tabeller
Lever svar
Ja, den estimerer en funksjon
Lever svar
Den gir bare lineær kurve
Lever svar
01:45
Er det lurt å navngi dataene sine (f.eks. liste) i programmet?
Ja, for å holde orden
Lever svar
Nei, det er bortkastet
Lever svar
Bare ved lineær data
Lever svar
02:01
Bekrefter man ofte kommandoer med Enter?
Ja
Lever svar
Nei
Lever svar
Det varierer fra gang til gang
Lever svar
02:07
Er avrunding til flere desimaler nyttig ved detaljerte beregninger?
Nei, man bør aldri runde
Lever svar
Ja, det gir presisjon
Lever svar
Kun ved heltall
Lever svar
02:24
Kan man teste ulike regresjonskommandoer for å se flere løsninger?
Ja
Lever svar
Nei
Lever svar
Bare i tekstprogrammer
Lever svar
02:28
Gjentas ofte samme prosedyre når man tester nye kommandoer?
Ja
Lever svar
Nei
Lever svar
Bare hvis man glemmer den gamle
Lever svar
02:35
Viser programmet noen ganger samme tall, men i ulik formel?
Nei, det er umulig
Lever svar
Ja, det kan skje
Lever svar
Bare med lineær regresjon
Lever svar
02:43
Kan en eksponentialfunksjon ha en startverdi og en vekstrate?
Ja
Lever svar
Nei, kun startverdi
Lever svar
Den har kun lineær stigning
Lever svar
02:50
Er det smart å beskrive fremgangsmåten man har brukt?
Ja, for dokumentasjon
Lever svar
Nei, det tar for lang tid
Lever svar
Kun om noen spør
Lever svar
02:57
Kan samme datasett beskrives med ulike eksponentialformler?
Ja
Lever svar
Nei
Lever svar
Kun én mulig formel
Lever svar
03:26
Representerer e en matematisk konstant i eksponentialfunksjoner?
Ja, cirka 2,71828
Lever svar
Nei, det er bare et symbol
Lever svar
Bare i lineære modeller
Lever svar
03:36
Uttrykker k-verdien vekstraten i en eksponentialmodell?
Nei, den er tilfeldig
Lever svar
Ja, den viser vekst per tidsenhet
Lever svar
Kun relevant i lineære funksjoner
Lever svar
03:39
Kan to ulike formler representere samme eksponentialkurve?
Nei, det er umulig
Lever svar
Ja, de kan være ekvivalente
Lever svar
Kun hvis de er lineære
Lever svar
03:47

I geogebra kan man gjøre regresjon med kommandoene regeksp og regeksp2. Gir begge eksponentiell regresjon?

Ja, ingen forskjell.

Lever svar

Ja, den ene gir funksjon av typen f(x)=abxf(x) = a \cdot b^x, mens den andre gir funksjon av typen f(x)=aekxf(x) = a \cdot e^{kx} .

Lever svar

Nei. 

Lever svar
×
Tilbakestill oppgaven som uløst
×
Tilbakestill oppgaven som uløst
×
Tilbakestill oppgaven som uløst

Hvilken kommando gir logistisk regresjon i Geogebra?

Reglog

Lever svar

Du kan velge mellom reglog og reglogist

Lever svar

Du må bruke reglogist. (Reglog gir logaritmisk regresjon)

Lever svar
×
Tilbakestill oppgaven som uløst
×
Tilbakestill oppgaven som uløst
×
Tilbakestill oppgaven som uløst