×
VGS matematikk
1 - 2 - 3 klasse

Lær VGS matten fra A til Å
med de beste metodene

Enkelt å
holde fokus

Forstå det
vanskelige

Få god
oversikt

Øv på
riktig tema

Få hjelp når
du stopper opp

Anne-Lise Frivold Svendsen

Flott opplegg og undervisning😊

Karina Tellmann Marthinussen

Tusen takk!

Ruben Flatås

Gjorde unna R2 som privatist på et halvt år!! Mattevideo har gjort det mye lettere å fordøye et så tungt pensum på så kort tid. Tusen takk for hjelpa!!😊

Vilde Ågotnes

Bra undervisning!

Hamdi A Ahmed

Jeg er fornøyd med videone deres det har hjulpet meg til å bestå matten i både Vgs og Uni . Så takk😊

Halvard Balto

Meget bra!

Halil Ibrahim Keser

Tusen takk. Veldig flink lærer. Gode forklaringer.

Marte Forsberg

Helt topp :D

Jon Mills

Bra side.

Kirsti Beate Årsandøy

Kjempebra!😊

Mari Bertelsen

Bra side. Veldig gode forklaringer😊

Selma Voss

Tror dette kommer til å redde meg på noen prøver fremover. Takk! :D

Caja Magnussen

takk for hjelpen

Abdi Omar

Takk for læreren av denne siden. Det er utrolig en bra side, fikk meg mye. Tusen hjertelig takk

Olav Lunde Arneberg

Kan trygt anbefale Arne Hovland! Beste læreren jeg har hatt i løpet av drøyt 20 år med utdanning.

Daniel Gabrielsen

takk for denne siden :D min 1T mattelærer snakker så monotont og gjør matte så kjedelig at interessen svinner vekk og jeg sovner etter 5 minutter.

Kassi 17 år - har eksamen i R1 til våren.
Min lærer går litt for raskt gjennom r1 pensum, noe som gjør at jeg trenger repetisjon av de vanskeligste emnene...les mer
Liam 34 år - har eksamen i R2 til jul.
Jeg kjøpte medlemskap fordi jeg ønsket forklaring via video og tilgang på "lærer" hele døgnet. Mattevideo er...les mer
Oda 16 år - har eksamen i 1T til våren.
Jeg ble abonnement hos mattevideo fordi jeg slet med å forstå pensum i 1T. Jeg ønsket å prøve, for å se...les mer
Nicolai 21 år - har eksamen i R2 til sommeren.
Jeg ble medlem for å forbedre meg, og gå dypere inn i spesifikke temaer. Jeg går i 10. klasse og tar forsert løp...les mer
Daniel 15 år - har eksamen i 1t til våren.
Jeg ble medlem for å forbedre meg, og gå dypere inn i spesifikke temaer. Jeg går i 10. klasse og tar forsert løp...les mer
June 20 år - preppet til eksamen.
Jeg brukte mattevideo da jeg måtte ta opp igjen eksamen, selvlært. Min gamle lærer gjorde det veldig vanskelig å henge med...les mer
Velg ditt fag
1P er et studieretningsfag på Vg1-nivå. 1P står for "Praktisk matematikk".
Hele læreplan fra A til Å
Videoundervsining alle temaer
Korte og effektive selvtester
Vi gjennomgår eksamen
Organiser temaene etter ønsket lærebok
Kapittelinndeling: Mattevideo.no 1P
×
Organiser innholdet etter din lærebok
Organiser videoer med ønskede ikoner
Organiser selvtester med ønskede ikoner
Tall og algebra
, curr: 1p, book: 670
23:23
04:08
16:35
19:03
11:03
18:32
04:36
07:00
06:08
10:46
Måleenheter
, curr: 1p, book: 670
05:51
09:03
10:27
19:02
Prosent
, curr: 1p, book: 670
18:57
05:53
06:22
06:09
22:02
13:42
Funksjoner og grafer
, curr: 1p, book: 670
14:07
02:24
16:06
30:30
25:50
10:59
13:10
13:12
05:59
05:15
07:46
Modeller
, curr: 1p, book: 670
23:45
09:25
34:56
25:42
Formler og mønstre
, curr: 1p, book: 670
25:11
34:04
08:10
04:38
15:09
18:16
36:32
20:00
 
DEL 1 Uten hjelpemidler

Oppgave 1 (3 poeng)

  Nedenfor ser du hvor stor oppslutning Kristelig Folkeparti hadde ved stortingsvalgene i 2013 og 2017.

a) Hvor mange prosentpoeng gikk oppslutningen til Kristelig Folkeparti tilbake med fra 2013 til 2017?
b) Hvor mange prosent gikk oppslutningen til Kristelig Folkeparti tilbake med fra 2013 til 2017?    

Oppgave 2 (2 poeng)

  I en oppskrift står det at du trenger 4 dL melk og 500 g hvetemel for å lage 12 boller. Tenk deg at du har 1 L melk og 1,5 kg hvetemel.
Hvor mange boller kan du lage dersom du følger oppskriften?    

Oppgave 3 (2 poeng)

  I 2013 var indeksen for en vare 80. Varen kostet da 1000 kroner. I 2017 var indeksen for den samme varen 120.
Hvor mye kostet varen i 2017 dersom prisen har fulgt indeksen?    
   

Oppgave 4 (2 poeng)

  På et kart er avstanden mellom to byer 9 cm. I virkeligheten er avstanden 45 km.
Bestem målestokken til kartet.    

Oppgave 5 (4 poeng)

  Mads skal ta førerkortet for bil. Ved trafikkskolen koster det 13 000 kroner for den obligatoriske delen av føreropplæringen inkludert gebyrer. I tillegg koster det 600 kroner for hver kjøretime.
a) Bestem en funksjon K som viser prisen K(x) kroner for å ta førerkortet dersom Mads bruker x kjøretimer.
b) Tegn grafen til K i et koordinatsystem.
c) Avgjør om prisen for å ta førerkortet og antall kjøretimer er proporsjonale størrelser.    

Oppgave 6 (2 poeng)

  En fire år gammel moped koster i dag 8000 kroner. Mopedens verdi har avtatt med 12 % per år siden den var ny.
Forklar hvilket av uttrykkene nedenfor som kan brukes til å finne hvor mye mopeden kostet da den var ny.
  • 800080000,1248000 - 8000 \cdot 0,12^4
  • 80000,8848000 \cdot 0,88^4
  • 80000,884\frac{8000}{0,88^4}
  • 80000,1248000 \cdot 0,12^{-4}
 
   

Oppgave 7 (3 poeng)

Tenk deg at du kaster en rød og en blå terning.
Avgjør hvilket av de to alternativene nedenfor som er mest sannsynlig.
  • Terningene viser samme antall øyne.
  • Summen av antall øyne er 5 eller mindre.

Oppgave 8 (2 poeng)

  Åpningen i toppen av en brusflaske har form som en sirkel med diameter 22 mm.
Avgjør om et kronestykke med omkrets 66 mm kan puttes ned i flasken.    
   

Oppgave 9 (4 poeng)

Ovenfor ser du en lampeskjerm av stoff med fire like sider. Skissen til høyre viser én side av lampeskjermen.
a) Bestem arealet av én side av lampeskjermen.
b) Hvor mye stoff går det med til en lampeskjerm når det må beregnes 10 % ekstra stoff til overlapp og kanter?  
   
DEL 2 Med hjelpemidler
 

Oppgave 1 (6 poeng)

Funksjonen T er gitt ved T(x)=0,018x3+0,55x23,5x+13T(x)=-0,018x^3+0,55x^2-3,5x+13 , 0x200 \leq x \leq 20 Funksjonen viser temperaturen T(x) grader celsius (°C) et sted i Norge x timer etter midnatt en sommerdag.
a) Bruk Graftegner til å tegne grafen til T
b) På hvilke tidspunkt (klokkeslett) var temperaturen 10°C
c) Bestem forskjellen mellom høyeste og laveste temperatur i perioden fra midnatt og fram til klokka 20.  
   

Oppgave 2 (4 poeng)

  Silje har en timelønn på 210 kroner. Hun betaler 2 % av bruttolønnen i pensjonsavgift og har et skattetrekk på 32 %. En måned arbeidet hun 162,5 timer.
a) Hvor mye fikk Silje utbetalt denne måneden? I 2017 fikk Silje utbetalt 47 736 kroner i feriepenger. Dette tilsvarer 12,0 % av feriepengegrunnlaget for 2017.
b) Bestem feriepengegrunnlaget til Silje for 2017.  

Oppgave 3 (4 poeng)

  Ved en videregående skole er det 640 elever. I en undersøkelse ble elevene spurt om når de legger seg kvelden før en skoledag.
  • 14\frac{1}{4} av elevene svarte at de legger seg før klokka 23.
Det viser seg at
  • 45\frac{4}{5} av elevene som legger seg før klokka 23, har et karaktersnitt over fire.
  • 13\frac{1}{3} av elevene som legger seg etter klokka 23, har et karaktersnitt over fire.
a) Lag en krysstabell som illustrerer opplysningene som er gitt ovenfor. Tenk deg at vi trekker ut en elev ved skolen tilfeldig.
b) Bestem sannsynligheten for at eleven har et karaktersnitt over fire. Tenk deg at den eleven vi trakk i oppgave b), har et karaktersnitt over fire.
c) Bestem sannsynligheten for at denne eleven legger seg før klokka 23 kvelden før en skoledag.  
   

Oppgave 4 (6 poeng)

Et område har form som vist på figuren ovenfor. Punktet F ligger på AC, punktet G ligger på CD, og B er skjæringspunktet mellom AE og CD. AB = 80 m, BE = AF = 20 m og DE = 32 m.
a) Forklar at △ABC, △BDE og △FGC er formlike.
b) Bestem AC, og hvis at FG = 67,5 m. Kristian skal dekke området ABGF med et 15 cm tykt lag med sand.
c) Hvor mange kubikkmeter send vil han trenge?  
   

Oppgave 5 (5 poeng)

Et firma bruker i perioder skoleungdommer for å få unna diverse malerjobber. Ungdommene får timelønn etter alder. I tillegg til timelønn må firmaet betale feriepenger og arbeidsgiveravgift. Firmaet har beregnet at disse utgiftene utgjør 25 % av timelønnen.
Du skal lage et regneark som vist nedenfor. I de hvite cellene skal firmaet registrere opplysninger. I de blå cellene skal du sette inn formler.
  • Timelønn og hvor stor prosentandel av lønnen som firmaet må beregne til feriepenger og arbeidsgiveravgift, skal registreres i celle B3, B4 og B5.
  • Når alderen registreres, skal regnearket automatisk gi riktig timelønn.
  • Totale kostnader for hver ungdom er summen av lønnen til ungdommen og utgiftene til feriepenger og arbeidsgiveravgift.

 
   

Oppgave 6 (6 poeng)

Olav har fått sommerjobb. Han skal plukke moreller. Morellene skal legges i kurver. Salgsprisen for en kurv moreller inkludert 15 % merverdiavgift er 69 kroner. Olav kan velge mellom tre ulike alternativer når det gjelder lønn. Alternativ 1: en fast timelønn på 135 kroner Alternativ 2: en fast timelønn på 80 kroner og i tillegg 3 kroner for hver kurv med moreller han plukker Alternativ 3: 12 % av salgsprisen uten merverdiavgift for hver kurv med moreller han plukker  
a) For hvilket eller hvilke av de tre alternativene ovenfor er lønnen proporsjonal med mengden moreller Olav plukker? Begrunn svaret ditt.
b) Hvor mange kurver med moreller må Olav plukke i løpet av en time for at alternativ 2 skal gi en høyere lønn enn alternativ 1?
c) Hvor mange kurver med moreller må Olav plukke i løpet av en dag for å tjene 1000 kroner dersom han velger alternativ 3?  

Oppgave 7 (5 poeng)

En pizzarestaurant tilbyr pizzaer i tre ulike størrelser.
  • Den minste pizzaen har en diameter på 20 cm, den mellomstore har en diameter på 30 cm, og den største har en diameter på 40 cm.
  • Alle pizzaene er 1,25 cm tykke.
Vi antar at når vi spiser pizza, er hver bit vi tar i munnen, 5 cm3. Nedenfor ser du prislisten for noen utvalgte pizzatyper.

a)Vis at volumet av den minste pizzaen er 393 cm3.
b)Lag et regneark som vist nedenfor. I de hvite cellene skal du registrere opplysninger. I de gule cellene skal du sette inn formler.

Gratis Prøvesmak
Superteknikker
En til en veiledning
1P
 - Kapittelinndeling: Mattevideo.no 1P (oppdatert læreplan)
 - Funksjoner og grafer
 - Gjennomsnittlig vekstfart
×
07:33
Teori 1
Gjennomsnittlig vekstfart.

1t_336
×
05:39
Teori 2
Gjennomsnittlig vekstfart - i et konkret tilfelle.

1t_343
05:59
Oppgave 1
Høyden til en plante, målt i cm, er t dager etter spiring gitt ved funksjonen   h(t)=0,0004t3+0,06t2,t[0,15]h(t)=-0,0004t^3+0,06t^2,t\in[0,15]

Finn den gjennomsnittlige vekstfarten i periodene
   a) [0,5]   b) [5,10]   c) [10,15]
Skjul video ▼
Vis video ▲
Selvtester og oppgaver for mengdetrening
10 sekunders quiz
Eksamensoppgaver
×
Hva representerer grafen i det første eksempelet?
Fluas høyde over et bord som funksjon av tid.
Lever svar
Temperaturen i løpet av en dag.
Lever svar
En bils hastighet over distanse.
Lever svar
00:00
Hva betyr det når grafen viser negative høyder?
Flua er under bordet.
Lever svar
Tiden er negativ.
Lever svar
Flua flyr høyere enn før.
Lever svar
00:54
Hva ser vi på i forhold til bordet?
Kun høyden.
Lever svar
Fluas vekt.
Lever svar
Tiden det tar å fly.
Lever svar
01:05
Mellom hvilke x-verdier beregner vi gjennomsnittlig stigning i høyde?
x = 0 og x = 2
Lever svar
x = 1 og x = 3
Lever svar
x = 2 og x = 4
Lever svar
01:10
Hvorfor kaller vi vekstfarten for "stigning" i dette eksempelet?
Fordi flua stiger i høyde.
Lever svar
Fordi flua synker i høyde.
Lever svar
Fordi tiden øker.
Lever svar
01:27
Hvordan finner vi punktene for x = 1 og x = 3 på grafen?
Ved å identifisere punktene som tilsvarer disse x-verdiene.
Lever svar
Ved å trekke en linje gjennom origo.
Lever svar
Ved å bruke en formel for y-verdi.
Lever svar
01:37
Hva indikerer en høyere y-verdi ved x = 3 sammenlignet med x = 1?
At flua har steget i høyde.
Lever svar
At flua har sunket i høyde.
Lever svar
At flua har stått stille.
Lever svar
01:49
Hvorfor ser vi på punktene ved x = 1 og x = 3?
For å beregne gjennomsnittlig stigning.
Lever svar
For å finne maksimumshøyden.
Lever svar
For å måle tidsforskjellen.
Lever svar
01:55
Hva viser det at flua er høyere ved tre sekunder enn ett sekund?
At flua stiger i høyde over tid.
Lever svar
At flua synker i høyde over tid.
Lever svar
At flua beveger seg horisontalt.
Lever svar
01:59
Hva representerer økningen i y på grafen?
Endringen i fluas høyde.
Lever svar
Tidsintervallet mellom målinger.
Lever svar
Fluas vektendring.
Lever svar
02:05
Hva bruker vi for å illustrere endringene på grafen?
En hjelpetrekant.
Lever svar
En sirkel.
Lever svar
En rett linje.
Lever svar
02:12
Hva får vi ved å gå vannrett bortover på grafen?
Endringen i x, eller delta x.
Lever svar
Økningen i y, eller delta y.
Lever svar
Ingen endring.
Lever svar
02:16
Hva kalles økningen i y-verdi?
Delta y.
Lever svar
Delta x.
Lever svar
Gamma y.
Lever svar
02:23
Hva representerer symbolet delta (Δ) i matematikk?
Summen av verdier.
Lever svar
Differansen mellom verdier.
Lever svar
Produktet av verdier.
Lever svar
02:36
Hva kaller vi økningen i x-verdi?
Delta x.
Lever svar
Delta y.
Lever svar
Delta z.
Lever svar
02:51
Hvordan beregner vi gjennomsnittlig stigning mellom to punkter?
Ved å dele delta y på delta x.
Lever svar
Ved å multiplisere delta y med delta x.
Lever svar
Ved å subtrahere delta x fra delta y.
Lever svar
02:59
Hva trenger vi for å sette opp koordinatene til et punkt?
x-verdi og tilsvarende y-verdi.
Lever svar
Bare x-verdi.
Lever svar
Bare y-verdi.
Lever svar
03:15
Hva representerer punktkoordinatene på grafen?
Et punkt med spesifikk x- og y-verdi.
Lever svar
Bare tidsforløpet.
Lever svar
Grafens helhetlige trend.
Lever svar
03:35
Hva er første koordinaten i et punkt?
x-verdien.
Lever svar
y-verdien.
Lever svar
Delta y.
Lever svar
03:41
Hva gjør vi etter å ha funnet x-verdien på grafen?
Leser av tilsvarende y-verdi.
Lever svar
Endrer x-verdien.
Lever svar
Tegner en ny graf.
Lever svar
03:46
Hvorfor er det nyttig å gjøre hoderegning i dette eksempelet?
For å raskt finne høydeforskjellen.
Lever svar
For å unngå å bruke kalkulator.
Lever svar
For å teste matematikkferdigheter.
Lever svar
03:57
Hva er resultatet av å subtrahere startverdien fra sluttverdien?
Endringen eller økningen mellom to punkter.
Lever svar
Produktet av de to verdiene.
Lever svar
Gjennomsnittet av de to verdiene.
Lever svar
04:13
Hva representerer delta y i beregninger?
Økningen i y-verdi.
Lever svar
Økningen i x-verdi.
Lever svar
Den totale y-verdien.
Lever svar
04:43
Hvordan finner vi delta x mellom to tidspunkter?
Ved å trekke start x-verdi fra slutt x-verdi.
Lever svar
Ved å legge sammen x-verdiene.
Lever svar
Ved å multiplisere x-verdiene.
Lever svar
04:59
Hva får vi ved å dele delta y på delta x?
Gjennomsnittlig stigning per sekund.
Lever svar
Total tidsforløp.
Lever svar
Sum av høydeendringene.
Lever svar
05:20
Hva uttrykker formelen delta y delt på delta x?
Gjennomsnittlig vekstfart eller stigningstall.
Lever svar
Totalt areal under grafen.
Lever svar
Forskjellen mellom x-verdier.
Lever svar
05:41
Hva er spesielt med en lineær funksjon i forhold til vekstfart?
Vekstfarten er konstant og lik stigningstallet.
Lever svar
Vekstfarten varierer hele tiden.
Lever svar
Den har ingen vekstfart.
Lever svar
06:18
Hva er stigningstallet til en rett linje?
Forholdet mellom delta y og delta x.
Lever svar
Summen av x- og y-verdiene.
Lever svar
Differansen mellom x-verdiene.
Lever svar
06:35
Hva trenger vi for å beregne delta y?
Y-verdien til slutt minus y-verdien til start.
Lever svar
X-verdien til slutt minus x-verdien til start.
Lever svar
Produktet av x og y.
Lever svar
06:47
Hva er delta x hvis x-verdiene er 1 og 4?
3
Lever svar
5
Lever svar
2
Lever svar
07:03
Hva forteller stigningstallet oss om en linje?
Hvor bratt linjen stiger eller synker.
Lever svar
Linjens totale lengde.
Lever svar
Hvor mange punkter linjen har.
Lever svar
07:20
Hva beskriver gjennomsnittlig vekstfart?
Hvor mange nullpunkter funksjonen har
Lever svar
Endring i funksjonsverdi over et intervall
Lever svar
Funksjonens toppunkt
Lever svar
00:00
Hva representerer Δy/Δx?
Antall løsninger i en ligning
Lever svar
Gjennomsnittlig stigning
Lever svar
Bredden til grafen
Lever svar
00:17
Hva er Δy/Δx definert som?
Summen av x-verdiene
Lever svar
(y₂−y₁)/(x₂−x₁)
Lever svar
Produktet av y-verdiene
Lever svar
00:27
Hva gjør man for å forstå en funksjon visuelt?
Leser av en tabell uten kontekst
Lever svar
Tegner grafen
Lever svar
Legger til et tilfeldig tall
Lever svar
00:35
Hva kalles en linje som skjærer gjennom en kurve på to punkter?
Tangens
Lever svar
Sekant
Lever svar
Vinkelhalverer
Lever svar
00:44
Hva kan brukes for å få oversikt over funksjonsverdiene?
En roman
Lever svar
En tabell
Lever svar
Et tilfeldig bilde
Lever svar
00:57
Hva trenger man for å illustrere funksjonen grafisk?
En kalkulator
Lever svar
Et koordinatsystem
Lever svar
Et linjeringsark
Lever svar
01:17
Hva plasserer man i koordinatsystemet for å danne en graf?
Tilfeldige bokstaver
Lever svar
Punkter
Lever svar
Fargede sirkler uten sammenheng
Lever svar
01:36
Hvordan finner man grafens form?
Ved å gjette
Lever svar
Ved å plotte flere punkter
Lever svar
Ved å lese en tekst
Lever svar
01:41
Hva slags kurve danner en funksjon som x²?
En rett linje
Lever svar
En parabel
Lever svar
En sirkel
Lever svar
01:51
Hvilken type funksjon danner ofte en parabel?
En lineær funksjon
Lever svar
En andregradsfunksjon
Lever svar
En konstant funksjon
Lever svar
02:02
Hvilken metode brukes for å finne gjennomsnittlig vekstfart?
Multiplikasjon av x-verdier
Lever svar
Delta y delt på delta x
Lever svar
Trekking av tilfeldige tall
Lever svar
02:06
Hva representerer Δy?
Forskjellen i x-verdiene
Lever svar
Forskjellen i funksjonsverdi mellom to punkter
Lever svar
Antall grafpunkter
Lever svar
02:25
Hva trenger man for å beregne Δy?
Ingen punkter
Lever svar
To funksjonsverdier
Lever svar
Bare en x-verdi
Lever svar
02:36
Hvor kan man hente funksjonsverdier for beregninger?
Fra et tilfeldig dikt
Lever svar
Fra en verdi-tabell
Lever svar
Fra en ubrukt blyant
Lever svar
02:39
Hva kalles verdien man får ved å sette inn x i funksjonen?
Delta-verdi
Lever svar
Funksjonsverdi
Lever svar
Fargekode
Lever svar
02:48
Hvordan finner man endringen i y?
Ved å legge sammen y₁ og y₂
Lever svar
Ved å trekke y₁ fra y₂
Lever svar
Ved å multiplisere alle y-verdier
Lever svar
02:51
Hva tilsvarer Δy i en funksjon?
f(x₁)+f(x₂)
Lever svar
f(x₂)-f(x₁)
Lever svar
f(x₁)*f(x₂)
Lever svar
02:58
Hva beskriver f(a)-f(b)?
Produktet av funksjonsverdiene
Lever svar
Forskjellen i funksjonsverdier mellom to punkter
Lever svar
Summen av x-verdiene
Lever svar
03:05
Hva er Δx?
Summen av alle y-verdier
Lever svar
Forskjellen mellom to x-verdier
Lever svar
Et tilfeldig valgt tall
Lever svar
03:24
Hva trenger du for å beregne gjennomsnittlig vekstfart?
Kun Δy
Lever svar
Δy og Δx
Lever svar
Kun en funksjonsverdi
Lever svar
03:32
Hvordan får man gjennomsnittlig vekstfart?
Ved å summere x og y
Lever svar
Ved å dele Δy på Δx
Lever svar
Ved å gange alle x-verdier
Lever svar
03:35
Hvis Δy=8 og Δx=2, hva er gjennomsnittlig vekstfart?
6
Lever svar
4
Lever svar
10
Lever svar
03:40
Hva kan Δy også kalles i en funksjon f?
Δx
Lever svar
Δf
Lever svar
Ingen endring
Lever svar
03:45
Hva representerer f vanligvis?
En konstant verdi
Lever svar
Et funksjonsuttrykk
Lever svar
En tilfeldig variabel
Lever svar
03:48
Hva er Δf et alternativt uttrykk for?
Δx
Lever svar
Δy
Lever svar
Ingenting
Lever svar
03:52
Hva kalles en linje som går gjennom to punkter på en kurve?
En tangent
Lever svar
En sekant
Lever svar
En normal
Lever svar
04:15
Hvilken linje illustrerer gjennomsnittlig vekstfart?
Tangenten
Lever svar
Sekanten
Lever svar
Normalen
Lever svar
04:49
En sekant er en linje relatert til hva?
En tabell
Lever svar
En graf
Lever svar
Et tall
Lever svar
04:56
Mellom hvilke typer x-verdier kan en sekant trekkes?
Kun ved x=0
Lever svar
Enhver to distinkte x-verdier
Lever svar
Kun ved x=1
Lever svar
04:58
Hva tilsvarer stigningstallet til sekanten?
Minsteverdien til funksjonen
Lever svar
Gjennomsnittlig vekstfart
Lever svar
Arealet under kurven
Lever svar
05:08
Hva bør man huske om gjennomsnittlig vekstfart og sekant?
At de er helt urelaterte
Lever svar
At sekantens stigningstall er gjennomsnittlig vekstfart
Lever svar
At sekanten ikke har noe med funksjonen å gjøre
Lever svar
05:29
Hvis x øker fra 4 til 7, hva er da Δx\Delta x ?
-3
Lever svar
3
Lever svar
7
Lever svar
×
Tilbakestill oppgaven som uløst
×
Tilbakestill oppgaven som uløst
×
Tilbakestill oppgaven som uløst
y er en funksjon av x. Når x øker fra 4 til 7, øker y fra -3 til 3. Den gjennomsnittlige vekstfarten når x øker fra 4 til 7 er da:
63=2\frac{6}{3} = 2
Lever svar
36=12\frac{3}{6} = \frac{1}{2}
Lever svar
74\frac{-7}{4}
Lever svar
×
Tilbakestill oppgaven som uløst
×
Tilbakestill oppgaven som uløst
×
Tilbakestill oppgaven som uløst