×
VGS matematikk
1 - 2 - 3 klasse

Lær VGS matten fra A til Å
med de beste metodene

Enkelt å
holde fokus

Forstå det
vanskelige

Få god
oversikt

Øv på
riktig tema

Få hjelp når
du stopper opp

Anne-Lise Frivold Svendsen

Flott opplegg og undervisning😊

Karina Tellmann Marthinussen

Tusen takk!

Ruben Flatås

Gjorde unna R2 som privatist på et halvt år!! Mattevideo har gjort det mye lettere å fordøye et så tungt pensum på så kort tid. Tusen takk for hjelpa!!😊

Vilde Ågotnes

Bra undervisning!

Hamdi A Ahmed

Jeg er fornøyd med videone deres det har hjulpet meg til å bestå matten i både Vgs og Uni . Så takk😊

Halvard Balto

Meget bra!

Halil Ibrahim Keser

Tusen takk. Veldig flink lærer. Gode forklaringer.

Marte Forsberg

Helt topp :D

Jon Mills

Bra side.

Kirsti Beate Årsandøy

Kjempebra!😊

Mari Bertelsen

Bra side. Veldig gode forklaringer😊

Selma Voss

Tror dette kommer til å redde meg på noen prøver fremover. Takk! :D

Caja Magnussen

takk for hjelpen

Abdi Omar

Takk for læreren av denne siden. Det er utrolig en bra side, fikk meg mye. Tusen hjertelig takk

Olav Lunde Arneberg

Kan trygt anbefale Arne Hovland! Beste læreren jeg har hatt i løpet av drøyt 20 år med utdanning.

Daniel Gabrielsen

takk for denne siden :D min 1T mattelærer snakker så monotont og gjør matte så kjedelig at interessen svinner vekk og jeg sovner etter 5 minutter.

Kassi 17 år - har eksamen i R1 til våren.
Min lærer går litt for raskt gjennom r1 pensum, noe som gjør at jeg trenger repetisjon av de vanskeligste emnene...les mer
Liam 34 år - har eksamen i R2 til jul.
Jeg kjøpte medlemskap fordi jeg ønsket forklaring via video og tilgang på "lærer" hele døgnet. Mattevideo er...les mer
Oda 16 år - har eksamen i 1T til våren.
Jeg ble abonnement hos mattevideo fordi jeg slet med å forstå pensum i 1T. Jeg ønsket å prøve, for å se...les mer
Nicolai 21 år - har eksamen i R2 til sommeren.
Jeg ble medlem for å forbedre meg, og gå dypere inn i spesifikke temaer. Jeg går i 10. klasse og tar forsert løp...les mer
Daniel 15 år - har eksamen i 1t til våren.
Jeg ble medlem for å forbedre meg, og gå dypere inn i spesifikke temaer. Jeg går i 10. klasse og tar forsert løp...les mer
June 20 år - preppet til eksamen.
Jeg brukte mattevideo da jeg måtte ta opp igjen eksamen, selvlært. Min gamle lærer gjorde det veldig vanskelig å henge med...les mer
Velg ditt fag
1P er et studieretningsfag på Vg1-nivå. 1P står for "Praktisk matematikk".
Hele læreplan fra A til Å
Videoundervsining alle temaer
Korte og effektive selvtester
Vi gjennomgår eksamen
Organiser temaene etter ønsket lærebok
Kapittelinndeling: Mattevideo.no 1P
×
Organiser innholdet etter din lærebok
Organiser videoer med ønskede ikoner
Organiser selvtester med ønskede ikoner
Tall og algebra
, curr: 1p, book: 670
23:23
04:08
16:35
19:03
11:03
18:32
04:36
07:00
06:08
10:46
Måleenheter
, curr: 1p, book: 670
05:51
09:03
10:27
19:02
Prosent
, curr: 1p, book: 670
18:57
05:53
06:22
06:09
22:02
13:42
Funksjoner og grafer
, curr: 1p, book: 670
14:07
02:24
16:06
30:30
25:50
10:59
13:10
13:12
05:59
05:15
07:46
Modeller
, curr: 1p, book: 670
23:45
09:25
34:56
25:42
Formler og mønstre
, curr: 1p, book: 670
25:11
34:04
08:10
04:38
15:09
18:16
36:32
20:00
 
DEL 1 Uten hjelpemidler

Oppgave 1 (3 poeng)

  Nedenfor ser du hvor stor oppslutning Kristelig Folkeparti hadde ved stortingsvalgene i 2013 og 2017.

a) Hvor mange prosentpoeng gikk oppslutningen til Kristelig Folkeparti tilbake med fra 2013 til 2017?
b) Hvor mange prosent gikk oppslutningen til Kristelig Folkeparti tilbake med fra 2013 til 2017?    

Oppgave 2 (2 poeng)

  I en oppskrift står det at du trenger 4 dL melk og 500 g hvetemel for å lage 12 boller. Tenk deg at du har 1 L melk og 1,5 kg hvetemel.
Hvor mange boller kan du lage dersom du følger oppskriften?    

Oppgave 3 (2 poeng)

  I 2013 var indeksen for en vare 80. Varen kostet da 1000 kroner. I 2017 var indeksen for den samme varen 120.
Hvor mye kostet varen i 2017 dersom prisen har fulgt indeksen?    
   

Oppgave 4 (2 poeng)

  På et kart er avstanden mellom to byer 9 cm. I virkeligheten er avstanden 45 km.
Bestem målestokken til kartet.    

Oppgave 5 (4 poeng)

  Mads skal ta førerkortet for bil. Ved trafikkskolen koster det 13 000 kroner for den obligatoriske delen av føreropplæringen inkludert gebyrer. I tillegg koster det 600 kroner for hver kjøretime.
a) Bestem en funksjon K som viser prisen K(x) kroner for å ta førerkortet dersom Mads bruker x kjøretimer.
b) Tegn grafen til K i et koordinatsystem.
c) Avgjør om prisen for å ta førerkortet og antall kjøretimer er proporsjonale størrelser.    

Oppgave 6 (2 poeng)

  En fire år gammel moped koster i dag 8000 kroner. Mopedens verdi har avtatt med 12 % per år siden den var ny.
Forklar hvilket av uttrykkene nedenfor som kan brukes til å finne hvor mye mopeden kostet da den var ny.
  • 800080000,1248000 - 8000 \cdot 0,12^4
  • 80000,8848000 \cdot 0,88^4
  • 80000,884\frac{8000}{0,88^4}
  • 80000,1248000 \cdot 0,12^{-4}
 
   

Oppgave 7 (3 poeng)

Tenk deg at du kaster en rød og en blå terning.
Avgjør hvilket av de to alternativene nedenfor som er mest sannsynlig.
  • Terningene viser samme antall øyne.
  • Summen av antall øyne er 5 eller mindre.

Oppgave 8 (2 poeng)

  Åpningen i toppen av en brusflaske har form som en sirkel med diameter 22 mm.
Avgjør om et kronestykke med omkrets 66 mm kan puttes ned i flasken.    
   

Oppgave 9 (4 poeng)

Ovenfor ser du en lampeskjerm av stoff med fire like sider. Skissen til høyre viser én side av lampeskjermen.
a) Bestem arealet av én side av lampeskjermen.
b) Hvor mye stoff går det med til en lampeskjerm når det må beregnes 10 % ekstra stoff til overlapp og kanter?  
   
DEL 2 Med hjelpemidler
 

Oppgave 1 (6 poeng)

Funksjonen T er gitt ved T(x)=0,018x3+0,55x23,5x+13T(x)=-0,018x^3+0,55x^2-3,5x+13 , 0x200 \leq x \leq 20 Funksjonen viser temperaturen T(x) grader celsius (°C) et sted i Norge x timer etter midnatt en sommerdag.
a) Bruk Graftegner til å tegne grafen til T
b) På hvilke tidspunkt (klokkeslett) var temperaturen 10°C
c) Bestem forskjellen mellom høyeste og laveste temperatur i perioden fra midnatt og fram til klokka 20.  
   

Oppgave 2 (4 poeng)

  Silje har en timelønn på 210 kroner. Hun betaler 2 % av bruttolønnen i pensjonsavgift og har et skattetrekk på 32 %. En måned arbeidet hun 162,5 timer.
a) Hvor mye fikk Silje utbetalt denne måneden? I 2017 fikk Silje utbetalt 47 736 kroner i feriepenger. Dette tilsvarer 12,0 % av feriepengegrunnlaget for 2017.
b) Bestem feriepengegrunnlaget til Silje for 2017.  

Oppgave 3 (4 poeng)

  Ved en videregående skole er det 640 elever. I en undersøkelse ble elevene spurt om når de legger seg kvelden før en skoledag.
  • 14\frac{1}{4} av elevene svarte at de legger seg før klokka 23.
Det viser seg at
  • 45\frac{4}{5} av elevene som legger seg før klokka 23, har et karaktersnitt over fire.
  • 13\frac{1}{3} av elevene som legger seg etter klokka 23, har et karaktersnitt over fire.
a) Lag en krysstabell som illustrerer opplysningene som er gitt ovenfor. Tenk deg at vi trekker ut en elev ved skolen tilfeldig.
b) Bestem sannsynligheten for at eleven har et karaktersnitt over fire. Tenk deg at den eleven vi trakk i oppgave b), har et karaktersnitt over fire.
c) Bestem sannsynligheten for at denne eleven legger seg før klokka 23 kvelden før en skoledag.  
   

Oppgave 4 (6 poeng)

Et område har form som vist på figuren ovenfor. Punktet F ligger på AC, punktet G ligger på CD, og B er skjæringspunktet mellom AE og CD. AB = 80 m, BE = AF = 20 m og DE = 32 m.
a) Forklar at △ABC, △BDE og △FGC er formlike.
b) Bestem AC, og hvis at FG = 67,5 m. Kristian skal dekke området ABGF med et 15 cm tykt lag med sand.
c) Hvor mange kubikkmeter send vil han trenge?  
   

Oppgave 5 (5 poeng)

Et firma bruker i perioder skoleungdommer for å få unna diverse malerjobber. Ungdommene får timelønn etter alder. I tillegg til timelønn må firmaet betale feriepenger og arbeidsgiveravgift. Firmaet har beregnet at disse utgiftene utgjør 25 % av timelønnen.
Du skal lage et regneark som vist nedenfor. I de hvite cellene skal firmaet registrere opplysninger. I de blå cellene skal du sette inn formler.
  • Timelønn og hvor stor prosentandel av lønnen som firmaet må beregne til feriepenger og arbeidsgiveravgift, skal registreres i celle B3, B4 og B5.
  • Når alderen registreres, skal regnearket automatisk gi riktig timelønn.
  • Totale kostnader for hver ungdom er summen av lønnen til ungdommen og utgiftene til feriepenger og arbeidsgiveravgift.

 
   

Oppgave 6 (6 poeng)

Olav har fått sommerjobb. Han skal plukke moreller. Morellene skal legges i kurver. Salgsprisen for en kurv moreller inkludert 15 % merverdiavgift er 69 kroner. Olav kan velge mellom tre ulike alternativer når det gjelder lønn. Alternativ 1: en fast timelønn på 135 kroner Alternativ 2: en fast timelønn på 80 kroner og i tillegg 3 kroner for hver kurv med moreller han plukker Alternativ 3: 12 % av salgsprisen uten merverdiavgift for hver kurv med moreller han plukker  
a) For hvilket eller hvilke av de tre alternativene ovenfor er lønnen proporsjonal med mengden moreller Olav plukker? Begrunn svaret ditt.
b) Hvor mange kurver med moreller må Olav plukke i løpet av en time for at alternativ 2 skal gi en høyere lønn enn alternativ 1?
c) Hvor mange kurver med moreller må Olav plukke i løpet av en dag for å tjene 1000 kroner dersom han velger alternativ 3?  

Oppgave 7 (5 poeng)

En pizzarestaurant tilbyr pizzaer i tre ulike størrelser.
  • Den minste pizzaen har en diameter på 20 cm, den mellomstore har en diameter på 30 cm, og den største har en diameter på 40 cm.
  • Alle pizzaene er 1,25 cm tykke.
Vi antar at når vi spiser pizza, er hver bit vi tar i munnen, 5 cm3. Nedenfor ser du prislisten for noen utvalgte pizzatyper.

a)Vis at volumet av den minste pizzaen er 393 cm3.
b)Lag et regneark som vist nedenfor. I de hvite cellene skal du registrere opplysninger. I de gule cellene skal du sette inn formler.

Gratis Prøvesmak
Superteknikker
En til en veiledning
1P
 - Kapittelinndeling: Mattevideo.no 1P (oppdatert læreplan)
 - Funksjoner og grafer
 - Lineære funksjoner i din hverdag
×
08:21
Teori 1
Et praktisk eksempel på en førstegradsfunksjon, basert på leie av bil.

1t_299
×
05:54
Teori 2
Vi løser en oppgave basert på en ferdig tegnet graf. 
05:45
Teori 4
Skjæringspunktet mellom to lineære grafer. Grafisk og ved regning.

1t_313
05:50
Teori 5
Vi ser på lineær regresjon. Både ved tegning og med kalkulator. 1p-2020_04_03_teori5_17630_647_870
02:58
Oppgave 1
Prisen på en drosjetur er gitt ved funksjonen   P(x)=25x+50P(x)=25 x+50 - hvor x er kjørte km.
   a) Tolk tallene 25 og 50.
   b) Hva var prisen for en tur på 4,3 km?
   c) Hvor langt kommer du for 300 kr?
03:54
Oppgave 2
Etter å ha kjørt x mil har Lars igjen V(x) liter bensin på tanken, der   V(x)=700,65xV(x)=70 - 0,65 x.
   a) Hva forteller funksjonsuttrykket?
   b) Finn nullpunktet til funksjonen. Hva forteller dette?
04:07
Oppgave 3
En plante er 10 cm høy. De neste dagene vokser planten 3,0 mm per døgn. La h(x) være høyden i cm etter x døgn.
   a) Skriv funksjonsuttrykket for h(x).
   b) Finn definisjonsmengden og verdimengden for h.
Skjul video ▼
Vis video ▲
Selvtester og oppgaver for mengdetrening
10 sekunders quiz
Eksamensoppgaver
×
Hva er en funksjon?
En entydig sammenheng mellom input og output
Lever svar
Et tilfeldig tall
Lever svar
En farge på et kart
Lever svar
00:00
Hva viser x-aksen vanligvis?
Input-verdier
Lever svar
Antall farger
Lever svar
Smaken av mat
Lever svar
00:41
Hva viser y-aksen vanligvis?
Resultatverdier
Lever svar
Navnet på en by
Lever svar
En vilkårlig bokstav
Lever svar
01:00
Er det alltid lett å lese av nøyaktige verdier fra en graf?
Nei, ikke alltid
Lever svar
Ja, alltid
Lever svar
Bare når grafen er rød
Lever svar
01:05
Kan grafavlesning kreve tilnærminger?
Ja
Lever svar
Nei
Lever svar
Bare om natten
Lever svar
01:09
Kan tid representeres som x-verdier i en funksjon?
Ja
Lever svar
Nei
Lever svar
Bare i helger
Lever svar
01:15
Kan en graf vise hendelser ved bestemte x-verdier?
Ja
Lever svar
Nei
Lever svar
Kun ved midnatt
Lever svar
01:30
Kan man lese av en temperatur ved en gitt x-verdi?
Ja
Lever svar
Nei
Lever svar
Bare når funksjonen er konstant
Lever svar
01:35
Er temperatur en mulig output av en funksjon?
Ja
Lever svar
Nei
Lever svar
Bare i matematikkbøker
Lever svar
01:40
Hva kalles det høyeste punktet på en funksjonsgraf?
Toppunkt
Lever svar
Bunnpunkt
Lever svar
Nullpunkt
Lever svar
01:42
Hva kalles et punkt der funksjonen når sin høyeste verdi?
Toppunkt
Lever svar
Nullpunkt
Lever svar
Skjæringspunkt
Lever svar
01:45
Kan presise målinger fra en graf kreve hjelpemidler?
Ja
Lever svar
Nei
Lever svar
Bare hvis grafen er digital
Lever svar
02:09
Hva kalles punktet der funksjonen er lavest?
Bunnpunkt
Lever svar
Toppunkt
Lever svar
Nullpunkt
Lever svar
02:14
Har et bunnpunkt både x- og y-koordinater?
Ja
Lever svar
Nei
Lever svar
Bare x-verdi
Lever svar
02:18
Kan man angi funksjonsverdier med desimaltall?
Ja
Lever svar
Nei
Lever svar
Bare hele tall
Lever svar
02:32
Skrives et punkt vanligvis som (x,y)?
Ja
Lever svar
Nei
Lever svar
(y,x)
Lever svar
02:37
Kalles x-koordinaten ofte førstekoordinaten?
Ja
Lever svar
Nei
Lever svar
Bare i engelsk matematikk
Lever svar
02:41
Kan et punkt markeres tydelig på en graf?
Ja
Lever svar
Nei
Lever svar
Bare med rød penn
Lever svar
02:56
Er det nyttig å markere punkter på grafen?
Ja
Lever svar
Nei
Lever svar
Aldri
Lever svar
02:59
Hva kalles punktet der funksjonen krysser x-aksen?
Nullpunkt
Lever svar
Toppunkt
Lever svar
Bunnpunkt
Lever svar
03:02
Er nullpunkt der funksjonsverdien er 0?
Ja
Lever svar
Nei
Lever svar
Bare ved toppunkt
Lever svar
03:07
Kan en funksjon ha flere nullpunkter?
Ja
Lever svar
Nei
Lever svar
Maks én
Lever svar
03:17
Angis nullpunkt oftest med bare x-verdi?
Ja
Lever svar
Nei
Lever svar
Med bare y-verdi
Lever svar
03:24
Er det vanlig å lese av x-verdier fra x-aksen?
Ja
Lever svar
Nei
Lever svar
Bare fra y-aksen
Lever svar
03:27
Kan x-verdier avleses omtrentlig fra grafen?
Ja
Lever svar
Nei
Lever svar
Bare hele tall
Lever svar
03:32
Kan funksjonsverdier være omtrentlig lesbare?
Ja
Lever svar
Nei
Lever svar
Bare i spesielle tilfeller
Lever svar
03:36
Kan en funksjon krysse x-aksen flere ganger?
Ja
Lever svar
Nei
Lever svar
Aldri
Lever svar
03:45
Kalles x-verdi også første koordinat?
Ja
Lever svar
Nei
Lever svar
Tredje koordinat
Lever svar
03:58
Hva kalles settet av alle x-verdiene en funksjon kan ha?
Definisjonsmengde
Lever svar
Verdimengde
Lever svar
Nullpunkt
Lever svar
04:03
Kan definisjonsmengden være begrenset til et tidsintervall?
Ja
Lever svar
Nei
Lever svar
Aldri
Lever svar
04:15
Er definisjonsmengden avhengig av konteksten?
Ja
Lever svar
Nei
Lever svar
Kun i matematikk
Lever svar
04:24
Kan omstendighetene bestemme en funksjons definisjonsmengde?
Ja
Lever svar
Nei
Lever svar
Aldri
Lever svar
04:42
Hva kalles mengden av alle mulige funksjonsverdier?
Verdimengde
Lever svar
Definisjonsmengde
Lever svar
Nullpunkt
Lever svar
04:53
Består verdimengden av verdier mellom minimum og maksimum?
Ja
Lever svar
Nei
Lever svar
Bare null
Lever svar
05:30
Kan en funksjon ha negative verdier?
Ja
Lever svar
Nei
Lever svar
Bare positive
Lever svar
05:35
Kan verdimengden inneholde desimaltall?
Ja
Lever svar
Nei
Lever svar
Kun hele tall
Lever svar
05:37
Har verdimengden en øvre grense hvis funksjonen har et maksimum?
Ja
Lever svar
Nei
Lever svar
Bare i teori
Lever svar
05:41
Hva kalles punktet der to rette linjer krysser hverandre?
Topppunkt
Lever svar
Skjæringspunkt
Lever svar
Nullpunkt
Lever svar
00:00
Hvilken metode kan vi bruke for å finne der to funksjoner møtes?
Tegning av grafer og beregning
Lever svar
Gjetting
Lever svar
Høre på musikk
Lever svar
00:05
Hva gjør man grafisk for å finne skjæringspunktet?
Tegner begge linjene og ser hvor de krysser
Lever svar
Gjetter en verdi
Lever svar
Ser bort fra grafen
Lever svar
00:32
Hva kan man lage for å organisere x- og y-verdier?
En tabell
Lever svar
Et dikt
Lever svar
En sang
Lever svar
00:37
Hvilke x-verdier er ofte lette å starte med?
Enkle tall som 0, 1, 2
Lever svar
Bare store tall
Lever svar
Bare negative tall
Lever svar
00:46
Hva kalles tallet som viser hvor bratt en linje er?
Stigningstallet
Lever svar
Konstantleddet
Lever svar
Skjæringspunktet
Lever svar
00:56
Hvorfor regne ut punkter nøyaktig?
For å vite nøyaktig hvor linjen går
Lever svar
For å lage fargerike figurer
Lever svar
For å slippe å tegne
Lever svar
01:13
Hva kalles en matematisk regel som gir en verdi for hver x?
En funksjon
Lever svar
Et tall
Lever svar
En figur
Lever svar
01:18
Kan en funksjon navngis med bokstaven G?
Ja
Lever svar
Nei
Lever svar
Bare med F
Lever svar
01:20
Hva skjer med y hvis stigningstallet er 1 og vi øker x med 1?
Y øker med 1
Lever svar
Y minker med 1
Lever svar
Y endres ikke
Lever svar
01:24
Hva representerer et punkt (x,y) i et koordinatsystem?
En posisjon
Lever svar
En ligning
Lever svar
En funksjon
Lever svar
02:08
Hvordan viser man en funksjon i et koordinatsystem?
Plotter punkter og trekker en linje
Lever svar
Lager en liste uten tegning
Lever svar
Gjetter formen
Lever svar
02:11
Er det lurt å sjekke punktene to ganger?
Ja
Lever svar
Nei
Lever svar
Bare av og til
Lever svar
02:18
Hva kan man bruke for å tegne rette linjer presist?
En linjal
Lever svar
En passer
Lever svar
En saks
Lever svar
02:20
Hva betyr det hvis punktene danner en stigende linje?
At funksjonen øker med økende x
Lever svar
At funksjonen minker
Lever svar
At funksjonen er konstant
Lever svar
02:26
Hvilken form har grafen til en lineær funksjon?
En rett linje
Lever svar
En kurve
Lever svar
En sirkel
Lever svar
02:35
Hva kan man gjøre med to datasett for to funksjoner?
Tegne begge for å finne skjæringspunkt
Lever svar
Blande dem tilfeldig
Lever svar
Ikke gjøre noe
Lever svar
02:38
Hva kaller man ofte den første funksjonen?
f
Lever svar
h
Lever svar
y
Lever svar
02:43
Hva kalles tallet som gir funksjonens verdi ved x=0?
Konstantleddet
Lever svar
Stigningstallet
Lever svar
Skjæringspunktet
Lever svar
02:46
Er det nyttig å markere punkter tydelig?
Ja
Lever svar
Nei
Lever svar
Ikke nødvendig
Lever svar
02:53
Hva oppnår vi ved å plotte flere punkter for en funksjon?
Vi ser linjens retning tydeligere
Lever svar
Vi løser en likning
Lever svar
Vi endrer funksjonen
Lever svar
02:55
Er det viktig å plassere punkter nøyaktig?
Ja
Lever svar
Nei
Lever svar
Kun ved behov
Lever svar
03:01
Hva får vi når vi kobler sammen punktene for en lineær funksjon?
En rett linje
Lever svar
En bue
Lever svar
Et enkelt punkt
Lever svar
03:03
Kan to lineære funksjoner ha mer enn ett skjæringspunkt?
Nei, bare ett
Lever svar
Ja, flere
Lever svar
Uendelig mange
Lever svar
03:10
Hva ser vi når begge linjer er tegnet?
Hvor de krysser hverandre
Lever svar
Fargen på papiret
Lever svar
Lengden på blyanten
Lever svar
03:13
Hva kan man gjøre når man har funnet skjæringspunktet?
Markere det, f.eks. med S
Lever svar
Slette det
Lever svar
Skjule det
Lever svar
03:15
Hva finner vi når to grafer krysser hverandre?
Skjæringspunktet
Lever svar
Parallellpunktet
Lever svar
Toppunktet
Lever svar
03:22
Hvilke koordinater beskriver et punkt?
(x,y)
Lever svar
(y,x,z)
Lever svar
(r,θ)
Lever svar
03:27
Er det vanlig å gi skjæringspunktet et navn?
Ja
Lever svar
Nei
Lever svar
Kun i spesielle tilfeller
Lever svar
03:30
Hvis x = -1 og y = 5, hva er punktets koordinater?
(-1, 5)
Lever svar
(5, -1)
Lever svar
(-1)
Lever svar
03:34
Hvorfor er det lurt å regne ut skjæringspunktet nøyaktig?
For å få en mer nøyaktig verdi
Lever svar
For å tegne i andre farger
Lever svar
For å unngå matematikk
Lever svar
03:48
Hvordan kan vi finne skjæringspunktet ved beregning?
Sette funksjonene lik hverandre og løse for x
Lever svar
Gjette en verdi
Lever svar
Legge sammen alle tall
Lever svar
03:57
Hva oppnår vi når vi setter to funksjoner lik hverandre?
Vi finner x der de møtes
Lever svar
Vi får alltid x=0
Lever svar
Vi får en sirkel
Lever svar
04:03
Hva kalles en likning med x i første grad?
En førstegradsligning
Lever svar
En andregradsligning
Lever svar
En tredjegradsligning
Lever svar
04:15
Hva gjør man normalt for å løse en førstegradsligning?
Samler x-ledd på én side og tall på den andre
Lever svar
Tegner en trekant
Lever svar
Bruker ren gjetting
Lever svar
04:22
Hva gjør man for å isolere x i en ligning?
Deler på koeffisienten foran x
Lever svar
Ganger med y
Lever svar
Trekker fra x
Lever svar
04:41
Når x er funnet, hvordan finner vi y?
Sette x inn i en av funksjonene
Lever svar
Gjette y
Lever svar
Legge til 10
Lever svar
04:56
Kan vi velge hvilken funksjon vi bruker for å finne y etter at x er funnet?
Ja, begge gir samme y
Lever svar
Nei, bare den første
Lever svar
Nei, bare den andre
Lever svar
05:09
Hva er -2 ganger -1?
2
Lever svar
-2
Lever svar
0
Lever svar
05:13
Hva er 2 pluss 3?
2
Lever svar
5
Lever svar
10
Lever svar
05:20
Hva bekrefter det å sjekke begge funksjonene med samme x?
At svaret er riktig
Lever svar
At vi tok feil
Lever svar
Ingenting
Lever svar
05:27
Hva er -1 pluss 6?
5
Lever svar
7
Lever svar
-5
Lever svar
05:35
Hva beskriver lineær regresjon?
En metode for å finne en rett linje som passer til data
Lever svar
En teknikk for å telle bokstaver i et ord
Lever svar
En måte å velge tilfeldige tall på
Lever svar
00:00
Hva kjennetegner en lineær funksjon?
Den danner en rett linje
Lever svar
Den danner alltid en sirkel
Lever svar
Den har uendelig mange svinger
Lever svar
00:03
Hva menes med en lineær sammenheng?
At økning i x gir jevn økning i y
Lever svar
At økning i x gir tilfeldige endringer i y
Lever svar
At økning i x gjør at y forsvinner
Lever svar
00:18
Hva kalles punktene i et koordinatsystem?
Målepunkter
Lever svar
Bokstaver
Lever svar
Fargede prikker uten betydning
Lever svar
00:24
Hva kan man gjøre om den nøyaktige linjen er usikker?
Prøve og feile for å finne en omtrentlig linje
Lever svar
Gi opp helt
Lever svar
Tegne en sirkel i stedet
Lever svar
01:23
Hvorfor justere linjen i en regresjon?
For å få den til å passe best mulig til punktene
Lever svar
For å gjøre linjen mest mulig fargerik
Lever svar
For at linjen skal forsvinne
Lever svar
01:27
Hva er konstantleddet i en lineær funksjon?
Verdien når x=0
Lever svar
Et tall som endrer seg med x
Lever svar
Et helt vilkårlig tall
Lever svar
01:47
Hva viser stigningstallet?
Hvor mye y øker når x øker med 1
Lever svar
Hvor mye farge endres i en tegning
Lever svar
Hvor raskt man løper 100 meter
Lever svar
02:05
Hva representerer delta i matematikk?
Endring i en variabel
Lever svar
En tilfeldig bokstav
Lever svar
En oppskrift på mat
Lever svar
02:15
Hvordan finner man stigningstallet?
Ved å dele endring i y på endring i x
Lever svar
Ved å legge sammen alle punktene
Lever svar
Ved å se på fargen på linjen
Lever svar
02:45
Hva betyr det å komme tilbake til et tema senere?
At man skal utdype temaet senere
Lever svar
At man glemmer temaet helt
Lever svar
At man bytter tema permanent
Lever svar
03:06
Hva betyr en brøk som y/x?
Forholdet mellom to verdier
Lever svar
En måte å slette tall på
Lever svar
En metode for å tegne figurer
Lever svar
03:12
Hvorfor bruke en kalkulator?
For å regne ut tall raskt og nøyaktig
Lever svar
For å lage lyd
Lever svar
For å fargelegge papir
Lever svar
03:15
Hva vil det si å dele et tall på et annet?
Å finne hvor mange ganger det andre tallet går i det første
Lever svar
Å legge tallene ved siden av hverandre
Lever svar
Å lage et meningsløst tall
Lever svar
03:19
Hva er et desimaltall?
Et tall med sifre etter komma
Lever svar
Et helt tall
Lever svar
Et tall uten praktisk bruk
Lever svar
03:24
Hva gjør en funksjon generelt?
Beskriver en sammenheng mellom variabler
Lever svar
Gjør alt tilfeldig
Lever svar
Fjerner behovet for tall
Lever svar
03:29
Hva brukes regresjon til?
Å tilpasse en modell til data
Lever svar
Å tegne tilfeldige streker
Lever svar
Å finne den raskeste bilen
Lever svar
03:35
Hva kjennetegner et måleresultat med desimaltall?
Det gir en mer presis verdi
Lever svar
Det er uten praktisk betydning
Lever svar
Det kan ikke brukes i beregninger
Lever svar
03:42
Hvilken variabel er ofte uavhengig?
x
Lever svar
y
Lever svar
z
Lever svar
03:47
Hva kan konstantleddet angi?
Funksjonsverdien ved x=0
Lever svar
Hastigheten til en bil
Lever svar
Størrelsen på et hus
Lever svar
03:50
Hva bør man gjøre om noe er uklart i beregningen?
Tydeliggjøre eller markere det
Lever svar
Ignorere det
Lever svar
Slutte å regne
Lever svar
03:53
Hva symboliserer y vanligvis?
Den avhengige variabelen
Lever svar
Antall epler i en kurv
Lever svar
En bokstav uten betydning
Lever svar
03:57
Hva betyr det å gjøre noe manuelt?
Å utføre det for hånd uten automatiske hjelpemidler
Lever svar
Å la en maskin gjøre det
Lever svar
Å hoppe over oppgaven
Lever svar
03:59
Hvorfor velge et større intervall for stigningstall?
For å få et mer nøyaktig gjennomsnitt
Lever svar
For å gjøre alt mer komplisert
Lever svar
For å unngå å finne noen sammenheng
Lever svar
04:21
Hvorfor dele total endring i y på total endring i x?
For å finne stigningstallet
Lever svar
For å endre fargen på grafen
Lever svar
For å slette alle tall
Lever svar
04:26
Hva gjør man når man legger inn data i en kalkulator?
Man registrerer verdier for beregning
Lever svar
Man sletter alle resultater
Lever svar
Man tegner et bilde
Lever svar
04:43
Hva må man oppgi for en regresjon?
Både x- og y-verdier
Lever svar
Bare fargen på pennen
Lever svar
Kun navnet på en person
Lever svar
04:49
Hva kreves for å utføre regresjon på en kalkulator?
At man legger inn alle relevante data
Lever svar
At man tegner figurer
Lever svar
At man gjetter resultatet
Lever svar
04:53
Hvorfor har kalkulatorer egne regresjonsfunksjoner?
For å gjøre det enklere å finne best tilpasset linje
Lever svar
For å endre språkinnstillinger
Lever svar
For å spille musikk
Lever svar
05:09
Hva betyr det at en funksjon er nær den funne modellen?
At den omtrent stemmer med dataene
Lever svar
At den er helt uten sammenheng
Lever svar
At den aldri kan brukes
Lever svar
05:29

Eirik har vært hos fotografen. Etter fotograferingen får han tilbud om å kjøpe en fotobok. Han kan selv bestemme hvor mange bilder han vil ha med i boken. Tabellen nedenfor viser prisen for fotobøker med 8, 14 og 24 bilder

Sammenhengen mellom antall bilder og pris kan beskrives ved hjelp av likningen y=ax+by=ax+b der xx er antall bilder i boken og y er prisen.

  • a) Bestem tallene a og b.

  • b) Gi en praktisk tolkning av tallene a og b i denne oppgaven.

a = 8, b = 1800
Lever svar
a = 600, b = 50
Lever svar
a = 50, b = 600
Lever svar
×
Tilbakestill oppgaven som uløst
×
Tilbakestill oppgaven som uløst
×
Tilbakestill oppgaven som uløst

I 2006 kostet en vare 600 kroner. I 2014 koster varen 1 000 kroner.

a) I løpet av disse åtte årene har prisen økt lineært. Forklar hva det vil si.

Vi antar at prisen fortsetter å øke lineært.

b) Bestem en funksjon f som viser prisen f(x) kroner for varen x år etter 2006.

c) Hvor mye vil varen koste i 2018 ifølge funksjonen i oppgave b)?


f(x)=600x+1000f(x) = 600x +1000

Lever svar

f(x)=50x+600f(x) = 50x +600

Lever svar

f(x)=50x2+600f(x)=50x^{2}+600

Lever svar
×
Tilbakestill oppgaven som uløst
×
Tilbakestill oppgaven som uløst
×
Tilbakestill oppgaven som uløst

Formlene nedenfor kan brukes for å anslå hvor høyt et barn vil bli i voksen alder.


Gutt: (fars høyde + mors høyde) ? 0,5 + 7 cm

Jente: (fars høyde + mors høyde) ? 0,5 – 7 cm


Mors og fars høyde oppgis i centimeter.

En familie består av mor, far og barna Ola og Kari. Mor er 160 cm høy, og far er 180 cm høy.

a) Hvor høye vil Ola og Kari bli i voksen alder ifølge formlene ovenfor?


En annen familie består av mor, far og sønnen Per, som nå er voksen. Far er 186 cm høy. Per er 189 cm høy.

b) Hvor høy er mor i denne familien ifølge den første formelen ovenfor?


Mor: 192cm192 cm

Lever svar

Mor: 178cm178 cm

Lever svar

Mor: 206cm206 cm

Lever svar
×
Tilbakestill oppgaven som uløst
×
Tilbakestill oppgaven som uløst
×
Tilbakestill oppgaven som uløst

Formlene nedenfor kan brukes for å anslå hvor høyt et barn vil bli i voksen alder.


Gutt: (fars høyde + mors høyde) * 0,5 + 7 cm

Jente: (fars høyde + mors høyde) * 0,5 – 7 cm


Mors og fars høyde oppgis i centimeter.

En familie består av mor, far og barna Ola og Kari. Mor er 160 cm høy, og far er 180 cm høy.

a) Hvor høye vil Ola og Kari bli i voksen alder ifølge formlene ovenfor?


En annen familie består av mor, far og sønnen Per, som nå er voksen. Far er 186 cm høy. Per er 189 cm høy.

b) Hvor høy er mor i denne familien ifølge den første formelen ovenfor?


Ola: 170170cm

Kari: 170170cm

Lever svar

Ola: 163163cm

Kari: 177177cm

Lever svar

Ola: 177177cm

Kari: 163163cm

Lever svar
×
Tilbakestill oppgaven som uløst
×
Tilbakestill oppgaven som uløst
×
Tilbakestill oppgaven som uløst
Å leie en bil koster 300 kr dagen, pluss 5 kr pr kjørte km. Hvis man leier bil 1 dag og kjører x km, blir kostnadene y i kroner:
y = 300x + 5
Lever svar
y = 5x + 300
Lever svar
y = 305x
Lever svar
×
Tilbakestill oppgaven som uløst
×
Tilbakestill oppgaven som uløst
×
Tilbakestill oppgaven som uløst

Eirik har vært hos fotografen. Etter fotograferingen får han tilbud om å kjøpe en fotobok. Han kan selv bestemme hvor mange bilder han vil ha med i boken. Tabellen nedenfor viser prisen for fotobøker med 8, 14 og 24 bilder

Sammenhengen mellom antall bilder og pris kan beskrives ved hjelp av likningen y=ax+by=ax+b der xx er antall bilder i boken og yy er prisen.

  • a) Bestem tallene a og b.

  • b) Gi en praktisk tolkning av tallene a og b i denne oppgaven.

a er prisen på bok uten bilder, b er prisen per bilde
Lever svar
a er prisen per bilde, b er pris på bok uten bilder
Lever svar
a er prisen per bilde, b er antall bilder i fotoboka
Lever svar
×
Tilbakestill oppgaven som uløst
×
Tilbakestill oppgaven som uløst
×
Tilbakestill oppgaven som uløst
Hvilken av disse utrykkene pleier ikke å dukke opp på en oppgave basert på en ferdig tegnet graf?
Nullpunkt
Lever svar
Rekursiv Formel
Lever svar
Verdimengde
Lever svar
×
Tilbakestill oppgaven som uløst
×
Tilbakestill oppgaven som uløst
×
Tilbakestill oppgaven som uløst
Ved regning, finn skjæringspunktet mellom funksjonene: f(x) = x + 6 og g(x) = -x + 2
(-2, -6)
Lever svar
(2, -2)
Lever svar
(-2, 4)
Lever svar
×
Tilbakestill oppgaven som uløst
×
Tilbakestill oppgaven som uløst
×
Tilbakestill oppgaven som uløst
Hva menes det med å finne en lineær regresjon?
Å finne en hvilken som helst rett linje på en graf
Lever svar
Å finne den linja som passer best til tallene
Lever svar
Å finne en linje som går gjennom alle punktene
Lever svar
×
Tilbakestill oppgaven som uløst
×
Tilbakestill oppgaven som uløst
×
Tilbakestill oppgaven som uløst

På et treningssenter har de to ulike prisavtaler.


Avtale 1: Du betaler 160 kroner per måned. I tillegg betaler du 20 kroner hver gang du

      trener.


Avtale 2: Du betaler 400 kroner per måned. Da kan du trene så mye du vil.



Kari trener på treningssenteret. Hun har valgt avtale 1.


a) I januar trente hun 8 ganger. I februar trente hun 14 ganger.

      Hvor mye måtte hun betale for treningen hver av disse to månedene?


b) Tegn en graf som viser sammenhengen mellom antall ganger Kari trener en

        måned, og prisen hun må betale denne måneden.


c) Bruk grafen i oppgave b) til å bestemme hvor mye hun må trene for at det skal lønne

seg med avtale 2.


La A være antall ganger du trener en måned. La P være prisen per trening.

d) For hver av avtalene 1 og 2 skal du avgjøre om A og P er


            - proporsjonale størrelser

            - omvendt proporsjonale størrelser


Se løsning og registrer oppgaven
×

På et treningssenter har de to ulike prisavtaler.


Avtale 1: Du betaler 160 kroner per måned. I tillegg betaler du 20 kroner hver gang du

      trener.


Avtale 2: Du betaler 400 kroner per måned. Da kan du trene så mye du vil.



Kari trener på treningssenteret. Hun har valgt avtale 1.


a) I januar trente hun 8 ganger. I februar trente hun 14 ganger.

      Hvor mye måtte hun betale for treningen hver av disse to månedene?


b) Tegn en graf som viser sammenhengen mellom antall ganger Kari trener en

        måned, og prisen hun må betale denne måneden.


c) Bruk grafen i oppgave b) til å bestemme hvor mye hun må trene for at det skal lønne

seg med avtale 2.


La A være antall ganger du trener en måned. La P være prisen per trening.

d) For hver av avtalene 1 og 2 skal du avgjøre om A og P er


            - proporsjonale størrelser

            - omvendt proporsjonale størrelser


Se løsning og registrer oppgaven
×

Anders skal leie en bil hos bilfirma A eller bilfirma B. Grafene nedenfor viser hvor mye han må betale til hvert firma dersom han leier bilen én dag og kjører x kilometer.

a) Sett opp et funksjonsuttrykk for hver av de to grafene.

b) Hva forteller den grafiske framstillingen om de to pristilbudene?

c) Er antall kilometer han kjører, og prisen han totalt må betale, proporsjonale størrelser? Begrunn svaret ditt.


Se løsning og registrer oppgaven
×

Anders skal leie en bil hos bilfirma A eller bilfirma B. Grafene nedenfor viser hvor mye han må betale til hvert firma dersom han leier bilen én dag og kjører x kilometer.

a) Sett opp et funksjonsuttrykk for hver av de to grafene.

b) Hva forteller den grafiske framstillingen om de to pristilbudene?

c) Er antall kilometer han kjører, og prisen han totalt må betale, proporsjonale størrelser? Begrunn svaret ditt.


Se løsning og registrer oppgaven
×

I 2006 kostet en vare 600 kroner. I 2014 koster varen 1 000 kroner.

a) I løpet av disse åtte årene har prisen økt lineært. Forklar hva det vil si.

Vi antar at prisen fortsetter å øke lineært.

b) Bestem en funksjon f som viser prisen f(x) kroner for varen x år etter 2006.

c) Hvor mye vil varen koste i 2018 ifølge funksjonen i oppgave b)?


Se løsning og registrer oppgaven
×

I 2006 kostet en vare 600 kroner. I 2014 koster varen 1 000 kroner.

a) I løpet av disse åtte årene har prisen økt lineært. Forklar hva det vil si.

Vi antar at prisen fortsetter å øke lineært.

b) Bestem en funksjon f som viser prisen f(x ) kroner for varen x år etter 2006.

c) Hvor mye vil varen koste i 2018 ifølge funksjonen i oppgave b)?


Se løsning og registrer oppgaven
×