×
VGS matematikk
1 - 2 - 3 klasse

Lær VGS matten fra A til Å
med de beste metodene

Enkelt å
holde fokus

Forstå det
vanskelige

Få god
oversikt

Øv på
riktig tema

Få hjelp når
du stopper opp

Anne-Lise Frivold Svendsen

Flott opplegg og undervisning😊

Karina Tellmann Marthinussen

Tusen takk!

Ruben Flatås

Gjorde unna R2 som privatist på et halvt år!! Mattevideo har gjort det mye lettere å fordøye et så tungt pensum på så kort tid. Tusen takk for hjelpa!!😊

Vilde Ågotnes

Bra undervisning!

Hamdi A Ahmed

Jeg er fornøyd med videone deres det har hjulpet meg til å bestå matten i både Vgs og Uni . Så takk😊

Halvard Balto

Meget bra!

Halil Ibrahim Keser

Tusen takk. Veldig flink lærer. Gode forklaringer.

Marte Forsberg

Helt topp :D

Jon Mills

Bra side.

Kirsti Beate Årsandøy

Kjempebra!😊

Mari Bertelsen

Bra side. Veldig gode forklaringer😊

Selma Voss

Tror dette kommer til å redde meg på noen prøver fremover. Takk! :D

Caja Magnussen

takk for hjelpen

Abdi Omar

Takk for læreren av denne siden. Det er utrolig en bra side, fikk meg mye. Tusen hjertelig takk

Olav Lunde Arneberg

Kan trygt anbefale Arne Hovland! Beste læreren jeg har hatt i løpet av drøyt 20 år med utdanning.

Daniel Gabrielsen

takk for denne siden :D min 1T mattelærer snakker så monotont og gjør matte så kjedelig at interessen svinner vekk og jeg sovner etter 5 minutter.

Kassi 17 år - har eksamen i R1 til våren.
Min lærer går litt for raskt gjennom r1 pensum, noe som gjør at jeg trenger repetisjon av de vanskeligste emnene...les mer
Liam 34 år - har eksamen i R2 til jul.
Jeg kjøpte medlemskap fordi jeg ønsket forklaring via video og tilgang på "lærer" hele døgnet. Mattevideo er...les mer
Oda 16 år - har eksamen i 1T til våren.
Jeg ble abonnement hos mattevideo fordi jeg slet med å forstå pensum i 1T. Jeg ønsket å prøve, for å se...les mer
Nicolai 21 år - har eksamen i R2 til sommeren.
Jeg ble medlem for å forbedre meg, og gå dypere inn i spesifikke temaer. Jeg går i 10. klasse og tar forsert løp...les mer
Daniel 15 år - har eksamen i 1t til våren.
Jeg ble medlem for å forbedre meg, og gå dypere inn i spesifikke temaer. Jeg går i 10. klasse og tar forsert løp...les mer
June 20 år - preppet til eksamen.
Jeg brukte mattevideo da jeg måtte ta opp igjen eksamen, selvlært. Min gamle lærer gjorde det veldig vanskelig å henge med...les mer
Velg ditt fag
1P er et studieretningsfag på Vg1-nivå. 1P står for "Praktisk matematikk".
Hele læreplan fra A til Å
Videoundervsining alle temaer
Korte og effektive selvtester
Vi gjennomgår eksamen
Organiser temaene etter ønsket lærebok
Kapittelinndeling: Mønster 1P
×
Organiser innholdet etter din lærebok
Organiser videoer med ønskede ikoner
Organiser selvtester med ønskede ikoner
Tall og tallregning
, curr: 1p, book: 1817
28:43
01:16
Lineære funksjoner og modeller
, curr: 1p, book: 1817
06:33
02:24
30:12
41:29
Brøk, forhold og prosent
, curr: 1p, book: 1817
20:46
20:06
12:05
07:49
11:12
06:09
Potenser og formler
, curr: 1p, book: 1817
11:03
22:40
00:57
06:08
09:49
16:18
28:05
08:10
04:38
Funksjoner
, curr: 1p, book: 1817
03:52
09:23
05:38
05:46
08:31
13:10
20:30
13:42
Modellering
, curr: 1p, book: 1817
03:42
29:35
36:32
20:00
25:42
Flere temaer
, curr: 1p, book: 1817
83:07
65:22
 
DEL 1 Uten hjelpemidler

Oppgave 1 (3 poeng)

  Nedenfor ser du hvor stor oppslutning Kristelig Folkeparti hadde ved stortingsvalgene i 2013 og 2017.

a) Hvor mange prosentpoeng gikk oppslutningen til Kristelig Folkeparti tilbake med fra 2013 til 2017?
b) Hvor mange prosent gikk oppslutningen til Kristelig Folkeparti tilbake med fra 2013 til 2017?    

Oppgave 2 (2 poeng)

  I en oppskrift står det at du trenger 4 dL melk og 500 g hvetemel for å lage 12 boller. Tenk deg at du har 1 L melk og 1,5 kg hvetemel.
Hvor mange boller kan du lage dersom du følger oppskriften?    

Oppgave 3 (2 poeng)

  I 2013 var indeksen for en vare 80. Varen kostet da 1000 kroner. I 2017 var indeksen for den samme varen 120.
Hvor mye kostet varen i 2017 dersom prisen har fulgt indeksen?    
   

Oppgave 4 (2 poeng)

  På et kart er avstanden mellom to byer 9 cm. I virkeligheten er avstanden 45 km.
Bestem målestokken til kartet.    

Oppgave 5 (4 poeng)

  Mads skal ta førerkortet for bil. Ved trafikkskolen koster det 13 000 kroner for den obligatoriske delen av føreropplæringen inkludert gebyrer. I tillegg koster det 600 kroner for hver kjøretime.
a) Bestem en funksjon K som viser prisen K(x) kroner for å ta førerkortet dersom Mads bruker x kjøretimer.
b) Tegn grafen til K i et koordinatsystem.
c) Avgjør om prisen for å ta førerkortet og antall kjøretimer er proporsjonale størrelser.    

Oppgave 6 (2 poeng)

  En fire år gammel moped koster i dag 8000 kroner. Mopedens verdi har avtatt med 12 % per år siden den var ny.
Forklar hvilket av uttrykkene nedenfor som kan brukes til å finne hvor mye mopeden kostet da den var ny.
  • 800080000,1248000 - 8000 \cdot 0,12^4
  • 80000,8848000 \cdot 0,88^4
  • 80000,884\frac{8000}{0,88^4}
  • 80000,1248000 \cdot 0,12^{-4}
 
   

Oppgave 7 (3 poeng)

Tenk deg at du kaster en rød og en blå terning.
Avgjør hvilket av de to alternativene nedenfor som er mest sannsynlig.
  • Terningene viser samme antall øyne.
  • Summen av antall øyne er 5 eller mindre.

Oppgave 8 (2 poeng)

  Åpningen i toppen av en brusflaske har form som en sirkel med diameter 22 mm.
Avgjør om et kronestykke med omkrets 66 mm kan puttes ned i flasken.    
   

Oppgave 9 (4 poeng)

Ovenfor ser du en lampeskjerm av stoff med fire like sider. Skissen til høyre viser én side av lampeskjermen.
a) Bestem arealet av én side av lampeskjermen.
b) Hvor mye stoff går det med til en lampeskjerm når det må beregnes 10 % ekstra stoff til overlapp og kanter?  
   
DEL 2 Med hjelpemidler
 

Oppgave 1 (6 poeng)

Funksjonen T er gitt ved T(x)=0,018x3+0,55x23,5x+13T(x)=-0,018x^3+0,55x^2-3,5x+13 , 0x200 \leq x \leq 20 Funksjonen viser temperaturen T(x) grader celsius (°C) et sted i Norge x timer etter midnatt en sommerdag.
a) Bruk Graftegner til å tegne grafen til T
b) På hvilke tidspunkt (klokkeslett) var temperaturen 10°C
c) Bestem forskjellen mellom høyeste og laveste temperatur i perioden fra midnatt og fram til klokka 20.  
   

Oppgave 2 (4 poeng)

  Silje har en timelønn på 210 kroner. Hun betaler 2 % av bruttolønnen i pensjonsavgift og har et skattetrekk på 32 %. En måned arbeidet hun 162,5 timer.
a) Hvor mye fikk Silje utbetalt denne måneden? I 2017 fikk Silje utbetalt 47 736 kroner i feriepenger. Dette tilsvarer 12,0 % av feriepengegrunnlaget for 2017.
b) Bestem feriepengegrunnlaget til Silje for 2017.  

Oppgave 3 (4 poeng)

  Ved en videregående skole er det 640 elever. I en undersøkelse ble elevene spurt om når de legger seg kvelden før en skoledag.
  • 14\frac{1}{4} av elevene svarte at de legger seg før klokka 23.
Det viser seg at
  • 45\frac{4}{5} av elevene som legger seg før klokka 23, har et karaktersnitt over fire.
  • 13\frac{1}{3} av elevene som legger seg etter klokka 23, har et karaktersnitt over fire.
a) Lag en krysstabell som illustrerer opplysningene som er gitt ovenfor. Tenk deg at vi trekker ut en elev ved skolen tilfeldig.
b) Bestem sannsynligheten for at eleven har et karaktersnitt over fire. Tenk deg at den eleven vi trakk i oppgave b), har et karaktersnitt over fire.
c) Bestem sannsynligheten for at denne eleven legger seg før klokka 23 kvelden før en skoledag.  
   

Oppgave 4 (6 poeng)

Et område har form som vist på figuren ovenfor. Punktet F ligger på AC, punktet G ligger på CD, og B er skjæringspunktet mellom AE og CD. AB = 80 m, BE = AF = 20 m og DE = 32 m.
a) Forklar at △ABC, △BDE og △FGC er formlike.
b) Bestem AC, og hvis at FG = 67,5 m. Kristian skal dekke området ABGF med et 15 cm tykt lag med sand.
c) Hvor mange kubikkmeter send vil han trenge?  
   

Oppgave 5 (5 poeng)

Et firma bruker i perioder skoleungdommer for å få unna diverse malerjobber. Ungdommene får timelønn etter alder. I tillegg til timelønn må firmaet betale feriepenger og arbeidsgiveravgift. Firmaet har beregnet at disse utgiftene utgjør 25 % av timelønnen.
Du skal lage et regneark som vist nedenfor. I de hvite cellene skal firmaet registrere opplysninger. I de blå cellene skal du sette inn formler.
  • Timelønn og hvor stor prosentandel av lønnen som firmaet må beregne til feriepenger og arbeidsgiveravgift, skal registreres i celle B3, B4 og B5.
  • Når alderen registreres, skal regnearket automatisk gi riktig timelønn.
  • Totale kostnader for hver ungdom er summen av lønnen til ungdommen og utgiftene til feriepenger og arbeidsgiveravgift.

 
   

Oppgave 6 (6 poeng)

Olav har fått sommerjobb. Han skal plukke moreller. Morellene skal legges i kurver. Salgsprisen for en kurv moreller inkludert 15 % merverdiavgift er 69 kroner. Olav kan velge mellom tre ulike alternativer når det gjelder lønn. Alternativ 1: en fast timelønn på 135 kroner Alternativ 2: en fast timelønn på 80 kroner og i tillegg 3 kroner for hver kurv med moreller han plukker Alternativ 3: 12 % av salgsprisen uten merverdiavgift for hver kurv med moreller han plukker  
a) For hvilket eller hvilke av de tre alternativene ovenfor er lønnen proporsjonal med mengden moreller Olav plukker? Begrunn svaret ditt.
b) Hvor mange kurver med moreller må Olav plukke i løpet av en time for at alternativ 2 skal gi en høyere lønn enn alternativ 1?
c) Hvor mange kurver med moreller må Olav plukke i løpet av en dag for å tjene 1000 kroner dersom han velger alternativ 3?  

Oppgave 7 (5 poeng)

En pizzarestaurant tilbyr pizzaer i tre ulike størrelser.
  • Den minste pizzaen har en diameter på 20 cm, den mellomstore har en diameter på 30 cm, og den største har en diameter på 40 cm.
  • Alle pizzaene er 1,25 cm tykke.
Vi antar at når vi spiser pizza, er hver bit vi tar i munnen, 5 cm3. Nedenfor ser du prislisten for noen utvalgte pizzatyper.

a)Vis at volumet av den minste pizzaen er 393 cm3.
b)Lag et regneark som vist nedenfor. I de hvite cellene skal du registrere opplysninger. I de gule cellene skal du sette inn formler.

Gratis Prøvesmak
Superteknikker
En til en veiledning
1P
 - Kapittelinndeling: Mønster 1P (oppdatert læreplan)
 - Modellering
 - Modellering med regresjon
×
00:42
Teori 3
Regresjon i Geogebra - kortversjon.
×
08:40
Teori 1
Å løse oppgaver med graftegner (Geogebra) - hva må vi gjøre? 1p_05_01
07:41
Teori 2
Regresjon i Geogebra.

1p-2020_05_01_teori3_17633_652_809
05:50
Teori 4
Vi ser på lineær regresjon. Både ved tegning og med kalkulator. 1p-2020_04_03_teori5_17630_647_870
04:23
Teori 5
Graftegner i geogebra - for hvilke x-verdier er funksjonen lik a, og hva er funksjonsverdien når x = b ?
02:19
Teori 6
Eksponentiell regresjon - for å finne vekstfaktor.
Skjul video ▼
Vis video ▲
Selvtester og oppgaver for mengdetrening
10 sekunders quiz
Eksamensoppgaver
×
Hva beskriver lineær regresjon?
En metode for å finne en rett linje som passer til data
Lever svar
En teknikk for å telle bokstaver i et ord
Lever svar
En måte å velge tilfeldige tall på
Lever svar
00:00
Hva kjennetegner en lineær funksjon?
Den danner en rett linje
Lever svar
Den danner alltid en sirkel
Lever svar
Den har uendelig mange svinger
Lever svar
00:03
Hva menes med en lineær sammenheng?
At økning i x gir jevn økning i y
Lever svar
At økning i x gir tilfeldige endringer i y
Lever svar
At økning i x gjør at y forsvinner
Lever svar
00:18
Hva kalles punktene i et koordinatsystem?
Målepunkter
Lever svar
Bokstaver
Lever svar
Fargede prikker uten betydning
Lever svar
00:24
Hva kan man gjøre om den nøyaktige linjen er usikker?
Prøve og feile for å finne en omtrentlig linje
Lever svar
Gi opp helt
Lever svar
Tegne en sirkel i stedet
Lever svar
01:23
Hvorfor justere linjen i en regresjon?
For å få den til å passe best mulig til punktene
Lever svar
For å gjøre linjen mest mulig fargerik
Lever svar
For at linjen skal forsvinne
Lever svar
01:27
Hva er konstantleddet i en lineær funksjon?
Verdien når x=0
Lever svar
Et tall som endrer seg med x
Lever svar
Et helt vilkårlig tall
Lever svar
01:47
Hva viser stigningstallet?
Hvor mye y øker når x øker med 1
Lever svar
Hvor mye farge endres i en tegning
Lever svar
Hvor raskt man løper 100 meter
Lever svar
02:05
Hva representerer delta i matematikk?
Endring i en variabel
Lever svar
En tilfeldig bokstav
Lever svar
En oppskrift på mat
Lever svar
02:15
Hvordan finner man stigningstallet?
Ved å dele endring i y på endring i x
Lever svar
Ved å legge sammen alle punktene
Lever svar
Ved å se på fargen på linjen
Lever svar
02:45
Hva betyr det å komme tilbake til et tema senere?
At man skal utdype temaet senere
Lever svar
At man glemmer temaet helt
Lever svar
At man bytter tema permanent
Lever svar
03:06
Hva betyr en brøk som y/x?
Forholdet mellom to verdier
Lever svar
En måte å slette tall på
Lever svar
En metode for å tegne figurer
Lever svar
03:12
Hvorfor bruke en kalkulator?
For å regne ut tall raskt og nøyaktig
Lever svar
For å lage lyd
Lever svar
For å fargelegge papir
Lever svar
03:15
Hva vil det si å dele et tall på et annet?
Å finne hvor mange ganger det andre tallet går i det første
Lever svar
Å legge tallene ved siden av hverandre
Lever svar
Å lage et meningsløst tall
Lever svar
03:19
Hva er et desimaltall?
Et tall med sifre etter komma
Lever svar
Et helt tall
Lever svar
Et tall uten praktisk bruk
Lever svar
03:24
Hva gjør en funksjon generelt?
Beskriver en sammenheng mellom variabler
Lever svar
Gjør alt tilfeldig
Lever svar
Fjerner behovet for tall
Lever svar
03:29
Hva brukes regresjon til?
Å tilpasse en modell til data
Lever svar
Å tegne tilfeldige streker
Lever svar
Å finne den raskeste bilen
Lever svar
03:35
Hva kjennetegner et måleresultat med desimaltall?
Det gir en mer presis verdi
Lever svar
Det er uten praktisk betydning
Lever svar
Det kan ikke brukes i beregninger
Lever svar
03:42
Hvilken variabel er ofte uavhengig?
x
Lever svar
y
Lever svar
z
Lever svar
03:47
Hva kan konstantleddet angi?
Funksjonsverdien ved x=0
Lever svar
Hastigheten til en bil
Lever svar
Størrelsen på et hus
Lever svar
03:50
Hva bør man gjøre om noe er uklart i beregningen?
Tydeliggjøre eller markere det
Lever svar
Ignorere det
Lever svar
Slutte å regne
Lever svar
03:53
Hva symboliserer y vanligvis?
Den avhengige variabelen
Lever svar
Antall epler i en kurv
Lever svar
En bokstav uten betydning
Lever svar
03:57
Hva betyr det å gjøre noe manuelt?
Å utføre det for hånd uten automatiske hjelpemidler
Lever svar
Å la en maskin gjøre det
Lever svar
Å hoppe over oppgaven
Lever svar
03:59
Hvorfor velge et større intervall for stigningstall?
For å få et mer nøyaktig gjennomsnitt
Lever svar
For å gjøre alt mer komplisert
Lever svar
For å unngå å finne noen sammenheng
Lever svar
04:21
Hvorfor dele total endring i y på total endring i x?
For å finne stigningstallet
Lever svar
For å endre fargen på grafen
Lever svar
For å slette alle tall
Lever svar
04:26
Hva gjør man når man legger inn data i en kalkulator?
Man registrerer verdier for beregning
Lever svar
Man sletter alle resultater
Lever svar
Man tegner et bilde
Lever svar
04:43
Hva må man oppgi for en regresjon?
Både x- og y-verdier
Lever svar
Bare fargen på pennen
Lever svar
Kun navnet på en person
Lever svar
04:49
Hva kreves for å utføre regresjon på en kalkulator?
At man legger inn alle relevante data
Lever svar
At man tegner figurer
Lever svar
At man gjetter resultatet
Lever svar
04:53
Hvorfor har kalkulatorer egne regresjonsfunksjoner?
For å gjøre det enklere å finne best tilpasset linje
Lever svar
For å endre språkinnstillinger
Lever svar
For å spille musikk
Lever svar
05:09
Hva betyr det at en funksjon er nær den funne modellen?
At den omtrent stemmer med dataene
Lever svar
At den er helt uten sammenheng
Lever svar
At den aldri kan brukes
Lever svar
05:29
Hva må du først vise for å legge inn punkter?
Regneark
Lever svar
Notatblokk
Lever svar
Tegnebrett
Lever svar
00:00
Hva begynner alle kommandoene på?
rygg
Lever svar
regres
Lever svar
punk
Lever svar
00:16
Hvor vises uttrykket etter kommandoen?
I algebrafeltet
Lever svar
I tekstfeltet
Lever svar
I regnearket
Lever svar
00:24
Hvor ser du grafen?
I grafvinduet
Lever svar
I tekstfeltet
Lever svar
I lydpanelet
Lever svar
00:31
Hva kalles området der grafen vises?
Grafikkfeltet
Lever svar
Tekstområdet
Lever svar
Kommandolinjen
Lever svar
00:39
Hva kan en graftegner brukes til?
Å tegne biler
Lever svar
Å tegne funksjoner
Lever svar
Å skrive tekst
Lever svar
00:00
Hva gjør man ofte først med en ny funksjon?
Tegner grafen
Lever svar
Leser av tall fra tabeller
Lever svar
Gjetter på svaret
Lever svar
00:31
Hvordan kan man finne hvor en funksjon har en bestemt verdi?
Finne skjæring med linjen y = verdien
Lever svar
Male et bilde
Lever svar
Regne alt i hodet uten graf
Lever svar
01:07
Hva skjer når du legger inn y = 10 i en graftegner?
En horisontal linje vises
Lever svar
Skjermen slukkes
Lever svar
Ingen ting skjer
Lever svar
01:16
Hva er et skjæringspunkt mellom to grafer?
Et punkt der de møtes
Lever svar
Et tilfeldig tall
Lever svar
En farge
Lever svar
01:18
Hva gjør kommandoen "skjæring mellom to objekt"?
Viser punktet der objektene krysser hverandre
Lever svar
Viser kun x-aksen
Lever svar
Endrer farge på grafen
Lever svar
01:28
Hva kalles stedet der en funksjon og en linje krysser?
Et skjæringspunkt
Lever svar
Et hjørne
Lever svar
En sirkel
Lever svar
01:37
Hva kan du gjøre med et punkt i en graftegner?
Legge til tekstetiketter
Lever svar
Spille musikk
Lever svar
Sende en e-post
Lever svar
01:42
Hva kan man gjøre hvis en funksjonsverdi har mange desimaler?
Runde av tallet
Lever svar
Ignorere funksjonen
Lever svar
Bytte farge på linja
Lever svar
01:53
Hva kan du gjøre etter å ha funnet et skjæringspunkt?
Undersøke andre deler av funksjonen
Lever svar
Slutte å bruke graftegner
Lever svar
Male et hus
Lever svar
02:17
Hvordan finner du funksjonsverdien for en gitt x-verdi?
Sett inn x i funksjonen
Lever svar
Les av en bok
Lever svar
Gjett et tall
Lever svar
02:20
Hva kalles resultatet av f(8)?
Funksjonsverdien
Lever svar
X-aksen
Lever svar
En bokstav
Lever svar
02:41
Hvordan kan du vise funksjonsverdien visuelt?
Tegne punktet (x, f(x))
Lever svar
Slå av grafen
Lever svar
Endre språk i programmet
Lever svar
02:51
Hva vil det si å navngi et punkt?
Å gi punktet et bokstavnavn
Lever svar
Å slette punktet
Lever svar
Å endre fargen på aksene
Lever svar
03:03
Hva betyr f(x) = 27?
Funksjonen har verdien 27 ved x
Lever svar
Funksjonen forsvinner
Lever svar
27 er x-verdien
Lever svar
03:06
Hva tilsvarer funksjonsverdien i et punkt?
Y-verdien
Lever svar
X-aksen
Lever svar
Et tilfeldig ord
Lever svar
03:16
Hvilket koordinat finner du når du evaluerer f(x)?
Y-koordinatet
Lever svar
X-koordinatet
Lever svar
Ingen koordinater
Lever svar
03:23
Hvordan kan du finne en funksjonsverdi ved hjelp av en loddrett linje?
Tegne x = verdien og finne skjæringen
Lever svar
Endre bakgrunnsfarge
Lever svar
Ingen måte å gjøre det på
Lever svar
03:26
Hvordan fjerner du et objekt i en graftegner?
Ved å slette det
Lever svar
Ved å rope høyt
Lever svar
Ved å endre språk
Lever svar
03:34
Hva skjer når du tegner x = 8 og finner skjæringen med funksjonen?
Du får et punkt med funksjonsverdien ved x=8
Lever svar
Du får ingen informasjon
Lever svar
Datamaskinen slår seg av
Lever svar
03:41
Hva kan du gjøre for å forstå en graf bedre?
Studere den selv
Lever svar
Ignorere den helt
Lever svar
Spørre om været
Lever svar
04:20
Hva kan eksponentiell regresjon brukes til?
Å finne lineær avtagende vekst
Lever svar
Å finne prosentvis vekst
Lever svar
Å redusere datamengde
Lever svar
00:00
Hva kan en tabell hjelpe med?
Vise data over tid
Lever svar
Skape forvirring
Lever svar
Skjule informasjon
Lever svar
00:09
Hva gjør et regneark?
Ingenting nyttig
Lever svar
Organiserer data
Lever svar
Fjerner data
Lever svar
00:33
Hvorfor navngi en liste?
For å forvirre brukeren
Lever svar
For enkel referanse til data
Lever svar
For å slette data
Lever svar
00:54
Hva betyr det når noe dukker opp på skjermen?
Ingenting
Lever svar
Resultatet vises
Lever svar
Programmet har stoppet
Lever svar
00:59
Hva betyr det å se et resultat?
Du kan ignorere det
Lever svar
Du kan bekrefte funn
Lever svar
Data forsvinner
Lever svar
01:04
Hva brukes en regresjonsfunksjon til?
Å gjette tilfeldig
Lever svar
Å beskrive en trend i data
Lever svar
Å slette data
Lever svar
01:06
Hva er en vekstfaktor?
Et tall som beskriver endring per tidsenhet
Lever svar
Et tilfeldig tall
Lever svar
En irrelevant verdi
Lever svar
01:39
Hvordan finner man prosentvis vekst?
(Vekstfaktor - 1) × 100
Lever svar
Ved å gjette
Lever svar
Ved å halvere vekstfaktoren
Lever svar
01:57
Hvordan skal man besvare en oppgave med graftegner på en prøve?
Bruker klipp og lim av besvarelsen i GeoGebra og limer inn i Word og besvarer i word.
Lever svar
Bruker mobiltelefonen til å ta bilde og viser det til læreren.
Lever svar
Besvarer i både GeoGebra og word og legger til begge filene i besvarelsen.
Lever svar
×
Tilbakestill oppgaven som uløst
×
Tilbakestill oppgaven som uløst
×
Tilbakestill oppgaven som uløst
Hva menes det med å finne en lineær regresjon?
Å finne en hvilken som helst rett linje på en graf
Lever svar
Å finne den linja som passer best til tallene
Lever svar
Å finne en linje som går gjennom alle punktene
Lever svar
×
Tilbakestill oppgaven som uløst
×
Tilbakestill oppgaven som uløst
×
Tilbakestill oppgaven som uløst
Hvor skal man legge til verdiene til et tallmaterialle i GeoGebra?
I word
Lever svar
I regneark
Lever svar
I graffeltet
Lever svar
×
Tilbakestill oppgaven som uløst
×
Tilbakestill oppgaven som uløst
×
Tilbakestill oppgaven som uløst
Hva fortalte punkt 2) om regresjon i GeoGebra?
VIS REGNEARK: Legg inn punktene som skal tilpasses OG LAG-Liste med punkter
Lever svar
Uttrykket kommer frem i algebrafeltet - og grafen i grafikkfeltet
Lever svar
Grafikkfelt-inntastingsfelt: Skriv kommando - alle begynner på REG
Lever svar
×
Tilbakestill oppgaven som uløst
×
Tilbakestill oppgaven som uløst
×
Tilbakestill oppgaven som uløst
Hvilket vekrtøy i GeoGebra burde man bruke til å finne skjæringspunkt mellom to linjer?
Mangekant
Lever svar
Skjæring mellom to objekt
Lever svar
Punkt på objekt
Lever svar
×
Tilbakestill oppgaven som uløst
×
Tilbakestill oppgaven som uløst
×
Tilbakestill oppgaven som uløst
Hvilken funksjon skal man bruke til eksponentiell regresjon?
RegEksp[ ]
Lever svar
RegLin[ ]
Lever svar
Reg[ , ]
Lever svar
×
Tilbakestill oppgaven som uløst
×
Tilbakestill oppgaven som uløst
×
Tilbakestill oppgaven som uløst

Funksjonane L og N er gitt ved
L(x)=0,0025x3+0,089x20,67x+6,12 , x[0,24]L(x) = -0,0025x^3 + 0,089x^2 -0,67x + 6,12 \ , \ x \in \left[ 0, 24 \right]
N(x)=0,00016x3+0,01x20,31x+1,15 , x[0,24]N(x) = -0,00016x^3 + 0,01x^2 - 0,31x + 1,15 \ , \ x \in \left[ 0,24 \right]
Funksjonene viser temperaturene L(x) grader celsius ved Lindesnes og N(x) grader celcius ved Nordkapp x timer etter midnatt et døgn i januar 2019.

a) Bruk graftegner til å tegne grafene til L og N.


b) Bestem den momentane vekstfarten til hver av funksjonene når x = 8. Gi en praktisk tolkning av disse svarene.


c) Bestem temperaturforskjellen mellom Lindesnes og Nordkapp klokka 12.00.


d) Når var temperaturforskjellen mellom Lindesnes og Nordkapp størst dette døgnet? Hvor stor var forskjellen da?

Se løsning og registrer oppgaven
×

Funksjonane L og N er gitt ved
L(x)=0,0025x3+0,089x20,67x+6,12 , x[0,24]L(x) = -0,0025x^3 + 0,089x^2 -0,67x + 6,12 \ , \ x \in \left[ 0, 24 \right]
N(x)=0,00016x3+0,01x20,31x+1,15 , x[0,24]N(x) = -0,00016x^3 + 0,01x^2 - 0,31x + 1,15 \ , \ x \in \left[ 0,24 \right]
Funksjonene viser temperaturene L(x) grader celsius ved Lindesnes og N(x) grader celcius ved Nordkapp x timer etter midnatt et døgn i januar 2019.

a) Bruk graftegner til å tegne grafene til L og N.


b) Bestem den momentane vekstfarten til hver av funksjonene når x = 8. Gi en praktisk tolkning av disse svarene.


c) Bestem temperaturforskjellen mellom Lindesnes og Nordkapp klokka 12.00.


d) Når var temperaturforskjellen mellom Lindesnes og Nordkapp størst dette døgnet? Hvor stor var forskjellen da?

Se løsning og registrer oppgaven
×

Funksjonane L og N er gitt ved
L(x)=0,0025x3+0,089x20,67x+6,12 , x[0,24]L(x) = -0,0025x^3 + 0,089x^2 -0,67x + 6,12 \ , \ x \in \left[ 0, 24 \right]
N(x)=0,00016x3+0,01x20,31x+1,15 , x[0,24]N(x) = -0,00016x^3 + 0,01x^2 - 0,31x + 1,15 \ , \ x \in \left[ 0,24 \right]
Funksjonene viser temperaturene L(x) grader celsius ved Lindesnes og N(x) grader celcius ved Nordkapp x timer etter midnatt et døgn i januar 2019.

a) Bruk graftegner til å tegne grafene til L og N.


b) Bestem den momentane vekstfarten til hver av funksjonene når x = 8. Gi en praktisk tolkning av disse svarene.


c) Bestem temperaturforskjellen mellom Lindesnes og Nordkapp klokka 12.00.


d) Når var temperaturforskjellen mellom Lindesnes og Nordkapp størst dette døgnet? Hvor stor var forskjellen da?

Se løsning og registrer oppgaven
×

Funksjonane L og N er gitt ved
L(x)=0,0025x3+0,089x20,67x+6,12 , x[0,24]L(x) = -0,0025x^3 + 0,089x^2 -0,67x + 6,12 \ , \ x \in \left[ 0, 24 \right]
N(x)=0,00016x3+0,01x20,31x+1,15 , x[0,24]N(x) = -0,00016x^3 + 0,01x^2 - 0,31x + 1,15 \ , \ x \in \left[ 0,24 \right]
Funksjonene viser temperaturene L(x) grader celsius ved Lindesnes og N(x) grader celcius ved Nordkapp x timer etter midnatt et døgn i januar 2019.

a) Bruk graftegner til å tegne grafene til L og N.


b) Bestem den momentane vekstfarten til hver av funksjonene når x = 8. Gi en praktisk tolkning av disse svarene.


c) Bestem temperaturforskjellen mellom Lindesnes og Nordkapp klokka 12.00.


d) Når var temperaturforskjellen mellom Lindesnes og Nordkapp størst dette døgnet? Hvor stor var forskjellen da?

Se løsning og registrer oppgaven
×