×
VGS matematikk
1 - 2 - 3 klasse

Lær VGS matten fra A til Å
med de beste metodene

Enkelt å
holde fokus

Forstå det
vanskelige

Få god
oversikt

Øv på
riktig tema

Få hjelp når
du stopper opp

Anne-Lise Frivold Svendsen

Flott opplegg og undervisning😊

Karina Tellmann Marthinussen

Tusen takk!

Ruben Flatås

Gjorde unna R2 som privatist på et halvt år!! Mattevideo har gjort det mye lettere å fordøye et så tungt pensum på så kort tid. Tusen takk for hjelpa!!😊

Vilde Ågotnes

Bra undervisning!

Hamdi A Ahmed

Jeg er fornøyd med videone deres det har hjulpet meg til å bestå matten i både Vgs og Uni . Så takk😊

Halvard Balto

Meget bra!

Halil Ibrahim Keser

Tusen takk. Veldig flink lærer. Gode forklaringer.

Marte Forsberg

Helt topp :D

Jon Mills

Bra side.

Kirsti Beate Årsandøy

Kjempebra!😊

Mari Bertelsen

Bra side. Veldig gode forklaringer😊

Selma Voss

Tror dette kommer til å redde meg på noen prøver fremover. Takk! :D

Caja Magnussen

takk for hjelpen

Abdi Omar

Takk for læreren av denne siden. Det er utrolig en bra side, fikk meg mye. Tusen hjertelig takk

Olav Lunde Arneberg

Kan trygt anbefale Arne Hovland! Beste læreren jeg har hatt i løpet av drøyt 20 år med utdanning.

Daniel Gabrielsen

takk for denne siden :D min 1T mattelærer snakker så monotont og gjør matte så kjedelig at interessen svinner vekk og jeg sovner etter 5 minutter.

Kassi 17 år - har eksamen i R1 til våren.
Min lærer går litt for raskt gjennom r1 pensum, noe som gjør at jeg trenger repetisjon av de vanskeligste emnene...les mer
Liam 34 år - har eksamen i R2 til jul.
Jeg kjøpte medlemskap fordi jeg ønsket forklaring via video og tilgang på "lærer" hele døgnet. Mattevideo er...les mer
Oda 16 år - har eksamen i 1T til våren.
Jeg ble abonnement hos mattevideo fordi jeg slet med å forstå pensum i 1T. Jeg ønsket å prøve, for å se...les mer
Nicolai 21 år - har eksamen i R2 til sommeren.
Jeg ble medlem for å forbedre meg, og gå dypere inn i spesifikke temaer. Jeg går i 10. klasse og tar forsert løp...les mer
Daniel 15 år - har eksamen i 1t til våren.
Jeg ble medlem for å forbedre meg, og gå dypere inn i spesifikke temaer. Jeg går i 10. klasse og tar forsert løp...les mer
June 20 år - preppet til eksamen.
Jeg brukte mattevideo da jeg måtte ta opp igjen eksamen, selvlært. Min gamle lærer gjorde det veldig vanskelig å henge med...les mer
Velg ditt fag
S1 er et studieretningsfag på Vg2-nivå. S1 står for "Samfunnsfaglig matematikk".
Hele læreplan fra A til Å
Videoundervsining alle temaer
Korte og effektive selvtester
Vi gjennomgår eksamen
Organiser temaene etter ønsket lærebok
Kapittelinndeling: Aschehoug S1
×
Organiser innholdet etter din lærebok
Organiser videoer med ønskede ikoner
Organiser selvtester med ønskede ikoner
Verktøykassa
, curr: s1, book: 1680
08:53
11:32
25:55
25:05
14:39
15:51
29:06
20:52
Potenser og logaritmer
, curr: s1, book: 1680
31:02
19:21
24:38
07:28
14:06
34:03
47:53
28:49
Grenseverdier og kontinuitet
, curr: s1, book: 1680
64:26
08:47
22:16
16:47
25:42
27:48
Derivasjon
, curr: s1, book: 1680
16:13
03:15
21:36
29:20
10:50
29:35
12:09
32:15
05:49
14:31
Sannsynlighet
, curr: s1, book: 1680
17:10
08:50
30:40
25:35
33:00
21:09
38:40
06:09
13:27
06:02
16:59
Anvendelser og modeller
, curr: s1, book: 1680
08:21
10:42
Flere temaer
, curr: s1, book: 1680
72:57
83:12
Eksamenstid 5 timer Del 1 (Uten hjelpemidler) skal leveres etter 2 timer. Del 2 (Med hjelpemidler) skal leveres etter senest 5 timer.
DEL 1 - Uten hjelpemidler

Oppgave 1 (5 poeng)

  Løs likningene

a) 2x25x+1=x32x^2 - 5x + 1 = x - 3

 

b) 2lg(x+7)=42 \cdot \lg{(x+7)} = 4

 

c) 323x+2=12263 \cdot 2^{3x + 2} = 12 \cdot 2^6

   

Oppgave 2 (2 poeng)

 
Løs likningssystemet

[x2+3y=73xy=1]\begin{bmatrix} x^2 + 3y = 7 \\ 3x - y = 1 \end{bmatrix}

Oppgave 3 (6 poeng)

  Skriv så enkelt som mulig

a) (2x3)22x(2x6)(2x-3)^2 -2x(2x-6)

 

b) lg2a+lg4a+lg8alg16a\lg{2a} + \lg{4a} + \lg{8a} - \lg{16a}

 

c) 1a+1babab\frac{1}{a} + \frac{1}{b} - \frac{a-b}{ab}

Oppgave 4 (2 poeng)

 
Løs ulikheten

x23x+20x^2 - 3x + 2 \geq 0

Oppgave 5 (5 poeng)

 

a) Skriv ned de åtte første radene i Pascals talltrekant.

I en eske ligger det 3 røde og 4 blå kuler. Tenk deg at du skal trekke tilfeldig 3 kuler uten tilbakelegging.  

b) Bestem sannsynligheten for at du trekker tre blå kuler.

 

c) Bestem sannsynligheten for at det er både røde og blå kuler blant de tre kulene du trekker.

 

Oppgave 6 (2 poeng)

 
Skraver området som er avgrenset av ulikhetene nedenfor, i et koordinatsystem.

x0x \geq 0

y8y \leq 8

x+y10x + y \leq 10

3x2y23x - 2y \leq -2

Oppgave 7 (4 poeng)

  Funksjonen f er gitt ved

f(x)=2x1x+2 , x2f(x) = \frac{2x - 1}{x + 2} \ , \ x \neq 2

 
a) Lag en skisse av grafen til f .  
b) Løs likningen f(x)=x2f(x) = x - 2  

Oppgave 8 (7 poeng)

  Funksjonen g er gitt ved

g(x)=2x3+3x212xg(x) = 2x^3+3x^2-12x

a) Bestem g(x)g'(x)  
b) Bestem toppunktet og bunnpunktet på grafen til g.  
c) Bestem den gjennomsnittlige vekstfarten til g i intervallet [0, 2].  
d) Bestem de punktene på grafen der den momentane vekstfarten er 24.  

Oppgave 9 (3 poeng)

  Nedenfor ser du fortegnslinjen til f(x)f'(x), for en funksjon f.

 
a) Bruk fortegnslinjen til å bestemme hvor grafen til f stiger, og hvor den synker.  
b) Lag en skisse som viser hvordan grafen til f kan se ut.
DEL 2 - Med hjelpemidler  

Oppgave 1 (3 poeng)

  Einar er fiskehandler. Han selger torsk og sei. En dag solgte han 110 kg torsk og 200 kg sei. Han fikk 6795 kroner. Dagen etter solgte han 150 kg torsk og 230 kg sei. For dette fikk han 8390 kroner.
Sett opp et likningssystem, og bruk CAS til å bestemme hvilken pris Einar fikk per kilogram for torsken, og hvilken pris han fikk per kilogram for seien.  

Oppgave 2 (6 poeng)

  Et flyselskap har en flyrute mellom Oslo og Bergen. Flyene som brukes, har plass til 116 passasjerer. Sannsynligheten for at en passasjer som har kjøpt billett, ikke møter til flyavgang, er 6 %. Vi lar X være antall passasjerer som møter til en tilfeldig valgt flyavgang.

a) Hva må vi forutsette for å kunne bruke en binomisk sannsynlighetsmodell i denne situasjonen?

I resten av denne oppgaven går vi ut fra at X er binomisk fordelt.

b) Til en flyavgang er det solgt 122 billetter. Bestem sannsynligheten for at alle som møter, får plass på flyet.

Flyselskapet ønsker at sannsynligheten skal være minst 95 % for at alle som møter, skal få plass på flyet.

c) Hvor mange billetter kan flyselskapet maksimalt selge da?

Oppgave 3 (7 poeng)

  Frode og Peter lager to typer fuglekasser. Type A er for meiser, og type B er for ugler. Frode lager delene til kassene, mens Peter setter dem sammen og maler dem.
  • Frode bruker 10 minutter på å lage delene til en kasse av type A og 30 minutter på å lage delene til en kasse av type B.
  • Peter bruker 20 minutter på å sette sammen og male en kasse av type A og 30 minutter på en kasse av type B.
  • I løpet av en uke kan Frode jobbe 15 timer.
  • I løpet av en uke kan Peter jobbe 20 timer.
De produserer x kasser av type A og y kasser av type B.

a) Forklar at x og y må ligge i området som er avgrenset av ulikhetene nedenfor:

x0,y0x \geq 0 , y \geq 0

x+3y90x + 3y \leq 90

2x+3y1202x + 3y \leq 120

 

b) Skraver dette området i et koordinatsystem.

Når de selger fuglekassene, har de en fortjeneste på 60 kroner for en kasse av type A og 150 kroner for en kasse av type B.

c) Hvor mange kasser bør de produsere av hver type for at fortjenesten skal bli størst mulig?

Etterspørselen etter fuglekasser av begge typer er veldig stor, så Frode sier han kan jobbe 3 timer ekstra en uke.

d) Hvor mange kasser bør de produsere av hver type denne uken dersom de vil ha størst mulig fortjeneste?

Oppgave 4 (8 poeng)

  Arne har sommerjobb som montør i en bedrift som produserer en bestemt type pumper. Han har lagt merke til at arbeidstempoet endrer seg i løpet av dagen. En dag teller han opp annenhver time hvor mange pumper han har montert så langt den dagen. Tabellen nedenfor viser resultatet

 

a) Bruk regresjon til å lage et tredjegradspolynom g som kan brukes som modell for hvor mange pumper Arne setter sammen i løpet av de x første timene på jobb en dag.

I resten av oppgaven lar vi funksjonen f gitt ved

f(x)=0,26x3+2,8x2+16x,0x9f(x)=-0,26x^3 + 2,8x^2 + 16x , 0 \leq x \leq 9

være en modell for antall pumper Arne klarer å montere i løpet av de x første timene på jobb en dag.

b) Bruk graftegner til å tegne grafen til f i et koordinatsystem.

Arne kan velge om han vil ha 9 kroner per pumpe han monterer, eller 190 kroner per time han jobber.

c) Hvor mange timer må han jobbe på én dag for at det skal lønne seg å velge betaling per montert pumpe?

d) Hvor mange timer må han jobbe én dag for at forskjellen på lønn per pumpe og lønn per time skal bli størst mulig?

 
Gratis Prøvesmak
Superteknikker
En til en veiledning
S1
 - Kapittelinndeling: Aschehoug S1 (oppdatert læreplan)
 - Verktøykassa
 - Likninger
×
06:09
Oppgave 7
Vi har likningen   x2x+a=0x^2-x+a=0 . Hvilke verdier av a gir:

a) to løsninger?   b) en løsning?   c) ingen løsning?
×
04:56
Teori 1
Vi ser på andregradslikninger. Alle andregradslikninger kan skrives på formen    ax2+bx+c=0a x^2+bx+c=0

Andregradslikninger
05:02
Teori 2
Vi løser andregradslikninger ved hjelp av formelen

x=b±b24ac2ax = {-b \pm \sqrt\frac{b^2-4ac}{2a}}

s1-2021_01_02_teori3_20539_1549_1722
01:34
Teori 3
Løs likningen   x2x+1=0x^2-x+1=0   - Her blir det INGEN LØSNING.
02:04
Oppgave 1
Bruk produktregelen til å løse andregradslikningen   2x2=3x2x^2=3x
04:21
Oppgave 2
Løs likningen   2x24x30=02x^2-4x-30 =0   - Vi bruker produktregelen, og en litt rå form for faktorisering, som det er litt morsomt å kunne:)
03:12
Oppgave 3
Løs likningen via andregradsformelen    2x2x3=02x^2-x-3=0 
02:24
Oppgave 4
Løs likningen ved hjelp av andregradsformelen   3x2x=03x^2-x=0
02:30
Oppgave 5
Løs likningen   y2+2y+1=0y^2+2y+1=0    ved å bruke andregradsformelen.
05:15
Oppgave 6
Løs likningen   6x22x=4+2x6x^2-2x=4+2x.
Skjul video ▼
Vis video ▲
Selvtester og oppgaver for mengdetrening
10 sekunders quiz
Eksamensoppgaver
×
Hva kjennetegner en andregradslikning?
Den høyeste potensen av x er to.
Lever svar
Den høyeste potensen av x er tre.
Lever svar
Den har ingen konstantledd.
Lever svar
00:00
Hva er graden til den høyeste x i en andregradslikning?
To
Lever svar
En
Lever svar
Tre
Lever svar
00:28
Hva er standardformen til en andregradslikning?
a x² + b x + c = 0
Lever svar
a x + b = 0
Lever svar
a x³ + b x² + c x + d = 0
Lever svar
00:31
Hva kalles tallet foran x i en ligning?
Koeffisienten
Lever svar
Konstantleddet
Lever svar
Eksponenten
Lever svar
01:03
Hvorfor flytter vi alle leddene til venstre side av likhetstegnet?
For å skrive ligningen på standardform
Lever svar
For å gjøre ligningen vanskeligere
Lever svar
For å eliminere x-leddene
Lever svar
01:07
Hva skjer med fortegnet til et ledd når det flyttes over likhetstegnet?
Fortegnet skifter
Lever svar
Fortegnet forblir det samme
Lever svar
Leddet blir null
Lever svar
02:03
Hva representerer leddet 2x i en ligning?
Førstegradsleddet
Lever svar
Andregradsleddet
Lever svar
Konstantleddet
Lever svar
02:15
Hva kan vi gjøre med ledd som allerede er på venstre side av likhetstegnet?
Beholde dem som de er
Lever svar
Flytte dem til høyre side
Lever svar
Endre fortegnet deres
Lever svar
02:17
Hva skjer med tallet når vi flytter det over likhetstegnet?
Det skifter fortegn
Lever svar
Det forblir uendret
Lever svar
Det blir null
Lever svar
02:23
Hva er resultatet når alle ledd er på venstre side av likhetstegnet?
Høyre side er lik null
Lever svar
Ligningen er uløselig
Lever svar
Venstre side er lik null
Lever svar
02:30
Hva bør vi gjøre etter å ha flyttet alle ledd til én side?
Forenkle uttrykket
Lever svar
Legge til flere ledd
Lever svar
Dele ligningen med x
Lever svar
02:35
Hva er 3 minus 2?
1
Lever svar
5
Lever svar
-1
Lever svar
02:40
Hva er koeffisienten a hvis leddet er -x²?
-1
Lever svar
1
Lever svar
0
Lever svar
02:52
Hva betyr det når det står -x² i en ligning?
Koeffisienten er -1
Lever svar
Koeffisienten er 0
Lever svar
Koeffisienten er 1
Lever svar
03:02
Hva kalles tallet foran x i en andregradslikning?
Koeffisienten b
Lever svar
Koeffisienten a
Lever svar
Koeffisienten c
Lever svar
03:09
Hva bør vi gjøre først hvis ligningen ikke er på standardform?
Flytte ledd over likhetstegnet
Lever svar
Dele med x
Lever svar
Multiplisere alle ledd med null
Lever svar
03:20
Hva betyr x²?
x opphøyd i to
Lever svar
x opphøyd i tre
Lever svar
x opphøyd i én
Lever svar
03:28
Hva skjer med et tall når vi flytter det over likhetstegnet?
Det skifter fortegn
Lever svar
Det forblir positivt
Lever svar
Det blir multiplisert med x
Lever svar
03:32
Hva tilsvarer det å flytte et ledd over likhetstegnet?
Å trekke det fra begge sider
Lever svar
Å legge det til på begge sider
Lever svar
Å multiplisere begge sider med det
Lever svar
03:38
Hva er koeffisienten a hvis det ikke står noe tall foran x²?
1
Lever svar
0
Lever svar
-1
Lever svar
03:47
Hva er verdien av b hvis det ikke er noe x-ledd i ligningen?
0
Lever svar
1
Lever svar
-1
Lever svar
04:00
Hva kalles leddet uten x i en ligning?
Konstantleddet
Lever svar
Koeffisienten
Lever svar
Eksponenten
Lever svar
04:11
Kan konstantleddet c være et negativt tall?
Ja
Lever svar
Nei
Lever svar
Bare hvis a er negativ
Lever svar
04:14
Kan koeffisienten a være negativ?
Ja
Lever svar
Nei
Lever svar
Bare hvis b er positiv
Lever svar
04:21
Hva er verdien av a hvis leddet er -2x²?
-2
Lever svar
2
Lever svar
0
Lever svar
04:28
Hva er verdien av c hvis det ikke er noe konstantledd?
0
Lever svar
1
Lever svar
-1
Lever svar
04:35
Hva er standardformen til en andregradslikning?
a x² + b x + c = 0
Lever svar
a x + b = 0
Lever svar
a x³ + b x² + c x + d = 0
Lever svar
04:47
Hvilket tall kaller vi a her: 5x2+2x2+5x+25x^{2} +2x^{2}+5x+2
5
Lever svar
2
Lever svar
7
Lever svar
×
Tilbakestill oppgaven som uløst
×
Tilbakestill oppgaven som uløst
×
Tilbakestill oppgaven som uløst
Hvor mange løsninger kan vi få med abc - metoden?
1
Lever svar
2
Lever svar
3
Lever svar
×
Tilbakestill oppgaven som uløst
×
Tilbakestill oppgaven som uløst
×
Tilbakestill oppgaven som uløst
Hva kan føre til ingen løsning?
Det er alltid en løsning
Lever svar
At teller blir større enn nevner
Lever svar
Negativt tall under rottegnet
Lever svar
×
Tilbakestill oppgaven som uløst
×
Tilbakestill oppgaven som uløst
×
Tilbakestill oppgaven som uløst