×
VGS matematikk
1 - 2 - 3 klasse

Lær VGS matten fra A til Å
med de beste metodene

Enkelt å
holde fokus

Forstå det
vanskelige

Få god
oversikt

Øv på
riktig tema

Få hjelp når
du stopper opp

Anne-Lise Frivold Svendsen

Flott opplegg og undervisning😊

Karina Tellmann Marthinussen

Tusen takk!

Ruben Flatås

Gjorde unna R2 som privatist på et halvt år!! Mattevideo har gjort det mye lettere å fordøye et så tungt pensum på så kort tid. Tusen takk for hjelpa!!😊

Vilde Ågotnes

Bra undervisning!

Hamdi A Ahmed

Jeg er fornøyd med videone deres det har hjulpet meg til å bestå matten i både Vgs og Uni . Så takk😊

Halvard Balto

Meget bra!

Halil Ibrahim Keser

Tusen takk. Veldig flink lærer. Gode forklaringer.

Marte Forsberg

Helt topp :D

Jon Mills

Bra side.

Kirsti Beate Årsandøy

Kjempebra!😊

Mari Bertelsen

Bra side. Veldig gode forklaringer😊

Selma Voss

Tror dette kommer til å redde meg på noen prøver fremover. Takk! :D

Caja Magnussen

takk for hjelpen

Abdi Omar

Takk for læreren av denne siden. Det er utrolig en bra side, fikk meg mye. Tusen hjertelig takk

Olav Lunde Arneberg

Kan trygt anbefale Arne Hovland! Beste læreren jeg har hatt i løpet av drøyt 20 år med utdanning.

Daniel Gabrielsen

takk for denne siden :D min 1T mattelærer snakker så monotont og gjør matte så kjedelig at interessen svinner vekk og jeg sovner etter 5 minutter.

Kassi 17 år - har eksamen i R1 til våren.
Min lærer går litt for raskt gjennom r1 pensum, noe som gjør at jeg trenger repetisjon av de vanskeligste emnene...les mer
Liam 34 år - har eksamen i R2 til jul.
Jeg kjøpte medlemskap fordi jeg ønsket forklaring via video og tilgang på "lærer" hele døgnet. Mattevideo er...les mer
Oda 16 år - har eksamen i 1T til våren.
Jeg ble abonnement hos mattevideo fordi jeg slet med å forstå pensum i 1T. Jeg ønsket å prøve, for å se...les mer
Nicolai 21 år - har eksamen i R2 til sommeren.
Jeg ble medlem for å forbedre meg, og gå dypere inn i spesifikke temaer. Jeg går i 10. klasse og tar forsert løp...les mer
Daniel 15 år - har eksamen i 1t til våren.
Jeg ble medlem for å forbedre meg, og gå dypere inn i spesifikke temaer. Jeg går i 10. klasse og tar forsert løp...les mer
June 20 år - preppet til eksamen.
Jeg brukte mattevideo da jeg måtte ta opp igjen eksamen, selvlært. Min gamle lærer gjorde det veldig vanskelig å henge med...les mer
Velg ditt fag
1P er et studieretningsfag på Vg1-nivå. 1P står for "Praktisk matematikk".
Hele læreplan fra A til Å
Videoundervsining alle temaer
Korte og effektive selvtester
Vi gjennomgår eksamen
Organiser temaene etter ønsket lærebok
Kapittelinndeling: Aschehoug 1P
×
Organiser innholdet etter din lærebok
Organiser videoer med ønskede ikoner
Organiser selvtester med ønskede ikoner
Tall
, curr: 1p, book: 786
28:35
33:51
11:03
18:32
06:08
05:58
Måleenheter
, curr: 1p, book: 786
03:15
04:23
07:55
10:27
18:39
Prosentregning
, curr: 1p, book: 786
19:11
14:02
11:12
02:52
43:09
23:07
Funksjoner
, curr: 1p, book: 786
04:40
14:30
20:59
05:41
18:27
13:45
17:35
10:59
Modellering
, curr: 1p, book: 786
07:34
07:41
05:40
Generalisering
, curr: 1p, book: 786
23:39
06:38
03:08
05:46
12:38
36:32
20:00
Flere temaer
, curr: 1p, book: 786
94:18
47:19
 
DEL 1 Uten hjelpemidler

Oppgave 1 (3 poeng)

  Nedenfor ser du hvor stor oppslutning Kristelig Folkeparti hadde ved stortingsvalgene i 2013 og 2017.

a) Hvor mange prosentpoeng gikk oppslutningen til Kristelig Folkeparti tilbake med fra 2013 til 2017?
b) Hvor mange prosent gikk oppslutningen til Kristelig Folkeparti tilbake med fra 2013 til 2017?    

Oppgave 2 (2 poeng)

  I en oppskrift står det at du trenger 4 dL melk og 500 g hvetemel for å lage 12 boller. Tenk deg at du har 1 L melk og 1,5 kg hvetemel.
Hvor mange boller kan du lage dersom du følger oppskriften?    

Oppgave 3 (2 poeng)

  I 2013 var indeksen for en vare 80. Varen kostet da 1000 kroner. I 2017 var indeksen for den samme varen 120.
Hvor mye kostet varen i 2017 dersom prisen har fulgt indeksen?    
   

Oppgave 4 (2 poeng)

  På et kart er avstanden mellom to byer 9 cm. I virkeligheten er avstanden 45 km.
Bestem målestokken til kartet.    

Oppgave 5 (4 poeng)

  Mads skal ta førerkortet for bil. Ved trafikkskolen koster det 13 000 kroner for den obligatoriske delen av føreropplæringen inkludert gebyrer. I tillegg koster det 600 kroner for hver kjøretime.
a) Bestem en funksjon K som viser prisen K(x) kroner for å ta førerkortet dersom Mads bruker x kjøretimer.
b) Tegn grafen til K i et koordinatsystem.
c) Avgjør om prisen for å ta førerkortet og antall kjøretimer er proporsjonale størrelser.    

Oppgave 6 (2 poeng)

  En fire år gammel moped koster i dag 8000 kroner. Mopedens verdi har avtatt med 12 % per år siden den var ny.
Forklar hvilket av uttrykkene nedenfor som kan brukes til å finne hvor mye mopeden kostet da den var ny.
  • 800080000,1248000 - 8000 \cdot 0,12^4
  • 80000,8848000 \cdot 0,88^4
  • 80000,884\frac{8000}{0,88^4}
  • 80000,1248000 \cdot 0,12^{-4}
 
   

Oppgave 7 (3 poeng)

Tenk deg at du kaster en rød og en blå terning.
Avgjør hvilket av de to alternativene nedenfor som er mest sannsynlig.
  • Terningene viser samme antall øyne.
  • Summen av antall øyne er 5 eller mindre.

Oppgave 8 (2 poeng)

  Åpningen i toppen av en brusflaske har form som en sirkel med diameter 22 mm.
Avgjør om et kronestykke med omkrets 66 mm kan puttes ned i flasken.    
   

Oppgave 9 (4 poeng)

Ovenfor ser du en lampeskjerm av stoff med fire like sider. Skissen til høyre viser én side av lampeskjermen.
a) Bestem arealet av én side av lampeskjermen.
b) Hvor mye stoff går det med til en lampeskjerm når det må beregnes 10 % ekstra stoff til overlapp og kanter?  
   
DEL 2 Med hjelpemidler
 

Oppgave 1 (6 poeng)

Funksjonen T er gitt ved T(x)=0,018x3+0,55x23,5x+13T(x)=-0,018x^3+0,55x^2-3,5x+13 , 0x200 \leq x \leq 20 Funksjonen viser temperaturen T(x) grader celsius (°C) et sted i Norge x timer etter midnatt en sommerdag.
a) Bruk Graftegner til å tegne grafen til T
b) På hvilke tidspunkt (klokkeslett) var temperaturen 10°C
c) Bestem forskjellen mellom høyeste og laveste temperatur i perioden fra midnatt og fram til klokka 20.  
   

Oppgave 2 (4 poeng)

  Silje har en timelønn på 210 kroner. Hun betaler 2 % av bruttolønnen i pensjonsavgift og har et skattetrekk på 32 %. En måned arbeidet hun 162,5 timer.
a) Hvor mye fikk Silje utbetalt denne måneden? I 2017 fikk Silje utbetalt 47 736 kroner i feriepenger. Dette tilsvarer 12,0 % av feriepengegrunnlaget for 2017.
b) Bestem feriepengegrunnlaget til Silje for 2017.  

Oppgave 3 (4 poeng)

  Ved en videregående skole er det 640 elever. I en undersøkelse ble elevene spurt om når de legger seg kvelden før en skoledag.
  • 14\frac{1}{4} av elevene svarte at de legger seg før klokka 23.
Det viser seg at
  • 45\frac{4}{5} av elevene som legger seg før klokka 23, har et karaktersnitt over fire.
  • 13\frac{1}{3} av elevene som legger seg etter klokka 23, har et karaktersnitt over fire.
a) Lag en krysstabell som illustrerer opplysningene som er gitt ovenfor. Tenk deg at vi trekker ut en elev ved skolen tilfeldig.
b) Bestem sannsynligheten for at eleven har et karaktersnitt over fire. Tenk deg at den eleven vi trakk i oppgave b), har et karaktersnitt over fire.
c) Bestem sannsynligheten for at denne eleven legger seg før klokka 23 kvelden før en skoledag.  
   

Oppgave 4 (6 poeng)

Et område har form som vist på figuren ovenfor. Punktet F ligger på AC, punktet G ligger på CD, og B er skjæringspunktet mellom AE og CD. AB = 80 m, BE = AF = 20 m og DE = 32 m.
a) Forklar at △ABC, △BDE og △FGC er formlike.
b) Bestem AC, og hvis at FG = 67,5 m. Kristian skal dekke området ABGF med et 15 cm tykt lag med sand.
c) Hvor mange kubikkmeter send vil han trenge?  
   

Oppgave 5 (5 poeng)

Et firma bruker i perioder skoleungdommer for å få unna diverse malerjobber. Ungdommene får timelønn etter alder. I tillegg til timelønn må firmaet betale feriepenger og arbeidsgiveravgift. Firmaet har beregnet at disse utgiftene utgjør 25 % av timelønnen.
Du skal lage et regneark som vist nedenfor. I de hvite cellene skal firmaet registrere opplysninger. I de blå cellene skal du sette inn formler.
  • Timelønn og hvor stor prosentandel av lønnen som firmaet må beregne til feriepenger og arbeidsgiveravgift, skal registreres i celle B3, B4 og B5.
  • Når alderen registreres, skal regnearket automatisk gi riktig timelønn.
  • Totale kostnader for hver ungdom er summen av lønnen til ungdommen og utgiftene til feriepenger og arbeidsgiveravgift.

 
   

Oppgave 6 (6 poeng)

Olav har fått sommerjobb. Han skal plukke moreller. Morellene skal legges i kurver. Salgsprisen for en kurv moreller inkludert 15 % merverdiavgift er 69 kroner. Olav kan velge mellom tre ulike alternativer når det gjelder lønn. Alternativ 1: en fast timelønn på 135 kroner Alternativ 2: en fast timelønn på 80 kroner og i tillegg 3 kroner for hver kurv med moreller han plukker Alternativ 3: 12 % av salgsprisen uten merverdiavgift for hver kurv med moreller han plukker  
a) For hvilket eller hvilke av de tre alternativene ovenfor er lønnen proporsjonal med mengden moreller Olav plukker? Begrunn svaret ditt.
b) Hvor mange kurver med moreller må Olav plukke i løpet av en time for at alternativ 2 skal gi en høyere lønn enn alternativ 1?
c) Hvor mange kurver med moreller må Olav plukke i løpet av en dag for å tjene 1000 kroner dersom han velger alternativ 3?  

Oppgave 7 (5 poeng)

En pizzarestaurant tilbyr pizzaer i tre ulike størrelser.
  • Den minste pizzaen har en diameter på 20 cm, den mellomstore har en diameter på 30 cm, og den største har en diameter på 40 cm.
  • Alle pizzaene er 1,25 cm tykke.
Vi antar at når vi spiser pizza, er hver bit vi tar i munnen, 5 cm3. Nedenfor ser du prislisten for noen utvalgte pizzatyper.

a)Vis at volumet av den minste pizzaen er 393 cm3.
b)Lag et regneark som vist nedenfor. I de hvite cellene skal du registrere opplysninger. I de gule cellene skal du sette inn formler.

Gratis Prøvesmak
Superteknikker
En til en veiledning
1P
 - Kapittelinndeling: Aschehoug 1P (oppdatert læreplan)
 - Tall
 - Regning med potenser
×
05:12
Teori 1
Potenser. De grunnleggende definisjonene. 1t_249
×
05:51
Teori 2
Potenser. Regneregler. 1t_251
01:52
Oppgave 1
Regn ut og skriv svaret så enkelt som mulig    a3aa1a2a2\frac{a^3\cdot a \cdot a^{-1}}{a^2 \cdot a^{-2}}
01:41
Oppgave 2
Regn ut    2382\frac{2^{-3}}{8^{-2}}
02:07
Oppgave 3
Regn ut    (3a)2a5a3a2(3a)^2\cdot\frac{a^5}{a\cdot 3 a^2}
01:54
Oppgave 4
Regn ut    (5a3)2(5a^3)^2
02:20
Oppgave 5
Regn ut    (5ab3)25ab1(5ab^3)^{-2} \cdot 5 ab^{-1}
08:38
Oppgave 6
Her er det mye å passe på:) Regn ut

      (2ab3)120(21ba5)2(4ab15b)2{\frac{(2ab^3)^{-1}}{20\cdot(2^{-1}b a^5)^2}}\cdot({\frac{4ab^{-1}}{5b}})^{-2}
Skjul video ▼
Vis video ▲
Selvtester og oppgaver for mengdetrening
10 sekunders quiz
Eksamensoppgaver
×
Er det viktig å forstå definisjoner før man bruker regler?
Ja
Lever svar
Nei
Lever svar
Usikker
Lever svar
00:00
Finnes det ofte flere regler for samme emne?
Ja
Lever svar
Nei
Lever svar
Kun én regel
Lever svar
00:28
Kan en potens ha et produkt som grunntall?
Ja
Lever svar
Nei
Lever svar
Bare i sjeldne tilfeller
Lever svar
00:50
Kan et grunntall i en potens selv være en potens?
Ja
Lever svar
Nei
Lever svar
Bare med tallene 1 og 2
Lever svar
01:01
Er det nyttig å se sammenhengen mellom definisjon og regel?
Ja
Lever svar
Nei
Lever svar
Spiller ingen rolle
Lever svar
01:06
Kan eksponenter legges sammen ved multiplikasjon av potenser med samme base?
Ja
Lever svar
Nei
Lever svar
Bare noen ganger
Lever svar
01:14
Fører multiplikasjon av potenser med samme base til at eksponentene adderes?
Ja
Lever svar
Nei
Lever svar
Det kommer an på basen
Lever svar
01:31
Er en potens en form for gjentatt multiplikasjon?
Ja
Lever svar
Nei
Lever svar
Vet ikke
Lever svar
01:37
Øker antall faktorer når vi multipliserer med en ekstra potens?
Ja
Lever svar
Nei
Lever svar
Avhenger av tallet
Lever svar
01:55
Kan en regel ofte spare tid sammenlignet med å bruke definisjonen?
Ja
Lever svar
Nei
Lever svar
Bare ved store tall
Lever svar
01:59
Kan eksponenter subtraheres ved deling av potenser med samme base?
Ja
Lever svar
Nei
Lever svar
Bare ved spesielle tilfeller
Lever svar
02:10
Blir eksponenten mindre ved deling av potenser med samme base?
Ja
Lever svar
Nei
Lever svar
Den øker alltid
Lever svar
02:35
Er reglene i samsvar med de underliggende definisjonene?
Ja
Lever svar
Nei
Lever svar
Bare noen
Lever svar
02:46
Kan man ofte forkorte uttrykk ved hjelp av definisjoner?
Ja
Lever svar
Nei
Lever svar
Aldri
Lever svar
03:09
Er det mulig å stryke like faktorer fra teller og nevner?
Ja
Lever svar
Nei
Lever svar
Bare med hele tall
Lever svar
03:12
Fører forkorting til et enklere resultat?
Ja
Lever svar
Nei
Lever svar
Ikke nødvendigvis
Lever svar
03:17
Bør en regel og dens definisjon være konsistente?
Ja
Lever svar
Nei
Lever svar
Det er uviktig
Lever svar
03:21
Kan en potens av et produkt deles opp i potenser av enkeltfaktorer?
Ja
Lever svar
Nei
Lever svar
Bare én faktor
Lever svar
03:26
Kan både tall og variable være faktorer i en potens?
Ja
Lever svar
Nei
Lever svar
Kun tall
Lever svar
03:47
Kan man opphøye hver faktor i et produkt til samme eksponent?
Ja
Lever svar
Nei
Lever svar
Kun én av dem
Lever svar
03:51
Kan 2 i tredje uttrykkes som 8?
Ja
Lever svar
Nei
Lever svar
Avhenger av kontekst
Lever svar
04:04
Er det ofte enkelt å verifisere et resultat med definisjonen?
Ja
Lever svar
Nei
Lever svar
Bare med små tall
Lever svar
04:14
Må man alltid bruke definisjonen?
Nei
Lever svar
Ja
Lever svar
Kun for kompliserte oppgaver
Lever svar
04:20
Kan en potens ha en brøk som grunntall?
Ja
Lever svar
Nei
Lever svar
Bare hele tall
Lever svar
04:23
Opphøyes både teller og nevner når en brøk settes i potens?
Ja
Lever svar
Nei
Lever svar
Bare telleren
Lever svar
04:28
Kan en halv i tredje skrives som 1 i tredje over 2 i tredje?
Ja
Lever svar
Nei
Lever svar
Bare omvendt
Lever svar
04:36
Gjelder regelen også for opphøyd teller og nevner?
Ja
Lever svar
Nei
Lever svar
Kun for telleren
Lever svar
04:43
Er 1 i tredje fortsatt 1?
Ja
Lever svar
Nei
Lever svar
Det blir større
Lever svar
04:49
Er to i tredje lik åtte?
Ja
Lever svar
Nei
Lever svar
Kun i noen tilfeller
Lever svar
04:56
Finnes det flere regler for potenser?
Ja
Lever svar
Nei
Lever svar
Bare én regel
Lever svar
05:05
Kan man opphøye en potens ytterligere?
Ja
Lever svar
Nei
Lever svar
Bare ved spesielle tilfeller
Lever svar
05:09
Multipiserer man eksponentene når en potens opphøyes på nytt?
Ja
Lever svar
Nei
Lever svar
Kun legger til dem
Lever svar
05:17
Blir (5^3)^8 til 5^(3*8)?
Ja
Lever svar
Nei
Lever svar
Kun 5^(3+8)
Lever svar
05:27
Hva er en definisjon?
En forklaring på hva noe betyr
Lever svar
En matematisk beregning
Lever svar
Et eksempel på en oppgave
Lever svar
00:00
Hva betyr en positiv eksponent?
At vi multipliserer grunntallet med seg selv så mange ganger som eksponenten angir
Lever svar
At vi legger til eksponenten til grunntallet
Lever svar
At vi dividerer grunntallet med eksponenten
Lever svar
00:24
Hva betyr det å opphøye et tall i andre potens?
Å multiplisere tallet med seg selv
Lever svar
Å multiplisere tallet med to
Lever svar
Å legge til to til tallet
Lever svar
01:00
Hva er en tierpotens?
En potens der grunntallet er ti
Lever svar
En potens med eksponenten ti
Lever svar
En potens som gir ti som resultat
Lever svar
01:11
Hva er verdien av et tall opphøyd i nullte potens?
1
Lever svar
0
Lever svar
Udefinert
Lever svar
01:33
Hvorfor er det viktig å kunne definisjonen av en matematisk regel?
For å kunne bruke regelen korrekt
Lever svar
Fordi definisjoner endres ofte
Lever svar
For å unngå å lære andre regler
Lever svar
01:53
Er null opphøyd i nullte potens definert?
Nei, det er udefinert
Lever svar
Ja, det er lik 1
Lever svar
Ja, det er lik 0
Lever svar
03:02
Hva er a opphøyd i minus første potens lik?
1 delt på a
Lever svar
a minus 1
Lever svar
a ganger minus 1
Lever svar
03:20
Hva betyr en negativ eksponent?
At vi tar den positive eksponenten og plasserer i nevneren
Lever svar
At tallet blir negativt
Lever svar
At vi subtraherer eksponenten fra tallet
Lever svar
03:44
Hva skjer når vi opphøyer en brøk i minus første potens?
Vi inverterer brøken
Lever svar
Brøken blir negativ
Lever svar
Vi legger til 1 til brøken
Lever svar
04:35
Hva skjer når et tall er opphøyd i 0?
Tallet blir lik 1
Lever svar
Tallet blir tatt bort fra regnestykket
Lever svar
Gjør tallet om til 0
Lever svar
×
Tilbakestill oppgaven som uløst
×
Tilbakestill oppgaven som uløst
×
Tilbakestill oppgaven som uløst
Hva tilbyr regnereglenes for potens?
De gjør at de grunnleggende definisjonene ikke trengs å bli brukt
Lever svar
De tilbyr oss nye typer potenser
Lever svar
De er regler som gjør det raskere å utføre potensregning
Lever svar
×
Tilbakestill oppgaven som uløst
×
Tilbakestill oppgaven som uløst
×
Tilbakestill oppgaven som uløst